рефераты бесплатно

МЕНЮ


Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления

Введем расширенный вектор состояния .

Тогда матрица Z будет иметь следующий вид: ,

или в численном виде

.

Собственные значения матрицы : .

Зная собственные значения и собственные вектора матрицы Z, построим матрицу

По определению все решения должны быть устойчивы при любых начальных условиях , т.е. при . Чтобы не оперировать комплексными числами, осуществим следующий переход. Пусть:

Тогда матрица  формируется следующим образом:

.

Можно показать, что матрицу можно получить из прямой матрицы собственных векторов:

,

.

Установившееся решение уравнения Риккати, полученное с помощью скрипта Solve_Riccati_Method_Diag.m. имеет вид:

5.1.2 Решение алгебраического уравнения Риккати интегрированием в обратном времени до установившегося состояния

Весовые матрицы и такие же как и в пункте (5.1.1).

Матрицы  тоже аналогичны.

Запишем уравнение Риккати

.

Зная, что , решаем уравнение методом обратного интегрирования на достаточно большом интервале (примерно 10 с.), получим установившееся решение с помощью скрипта

Solve_Riccati_Method_Revers_Integr.m.:

Рис.22. Графики решения уравнения Риккати.


Найдем разницу между решениями уравнения Риккати в пунктах 5.1.1 и 5.1.2:

Выводы: сравнивая решения полученные в пунктах 5.1.1 и 5.1.2 можно сказать, что решения уравнения Риккати первым и вторым методами совпадают с заданной точностью. Погрешность расхождения решений невелика.

Используя скрипт AKOR_stabilizaciya_na_polybeskon_interval.m получим коэффициенты регулятора, фазовые координаты системы и управление.

Рис.23. Графики коэффициентов регулятора обратной связи.


 

 

Рис.24. Графики фазовых координат.

Рис.25. График управления.

Выводы: т.к. решения уравнения Риккати методом диагонализации и интегрирования в обратном времени дают практически одинаковый результат, то можно считать, что задача АКОР – стабилизации на полубесконечном интервале решена с заданной точностью.

5.2 Стабилизации объекта управления на конечном интервале времени

Рассмотрим линейный объект управления, описываемый системой дифференциальных уравнений в нормальной форме

Начальные условия для заданной системы

Время стабилизации .

Необходимо получить закон управления

минимизирующий функционал вида

Закон оптимального управления в данной задаче имеет вид

Матричное дифференциальное уравнение Риккати будет иметь следующий вид:

Если обозначить  то можно записать

Уравнение замкнутой скорректированной системы примет вид


Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Используя скрипт AKOR_stabilizaciya_na_konech_interval.m получили следующие результаты:

Рис.26. Графики решения уравнения Риккати.

Рис.27. Графики коэффициентов регулятора обратной связи.


Рис.28. Графики фазовых координат.


Рис.29. График управления.

Сравним, как стабилизируется система управления с постоянными и переменными коэффициентами регулятора обратной связи на начальном этапе:

Рис.30. Графики фазовых координат.

Выводы: из графиков видно, что система, у которой коэффициенты регулятора меняются со временем, стабилизируется не хуже, чем, система, у которой коэффициенты регулятора не изменяются.

5.3 Задача АКОР – стабилизации для компенсации
известного возмущающего воздействия

Рассмотрим систему вида

,

где  – возмущающее воздействие.

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Начальные условия для заданной системы .

Время стабилизации .

Задаем возмущающее воздействие только на первую координату, так как только она имеет значение

 и .

Решение задачи стабилизации сводится к решению уравнения Риккати

с начальными условиями:

Введём вспомогательную вектор-функцию , ДУ которой имеет вид:

с начальными условиями: .

Управление определяется по формуле:

.

Используя скрипт AKOR_stabilizaciya_pri_vozmusheniyah.m, получили следующие результаты:


Рис.31. Графики решения уравнения Риккати.

Рис.32. Графики коэффициентов регулятора обратной и прямой связи.


Рис.33. График возмущающего воздействия.

Рис.34. График вспомогательной вектор – функции.

Рис.35. Графики фазовых координат.

Рис.36. График управления.

Рис.37. График возмущающего воздействия.

Рис.38. График вспомогательной вектор – функции.

 

 

Рис.39. Графики фазовых координат.

Рис.40. График управления.

Выводы: По графикам фазовых координат при различных воздействиях видно, что влияние возмущающего воздействия не существенно и фазовые координаты устанавливаются в ноль. При этом видно, что графики первой фазовой координаты при различных воздействиях мало отличаются друг от друга, т.е. система отрабатывает любое возмущение.

5.4 Задача АКОР для отслеживания известного задающего воздействия. I подход

Система задана в виде:

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Начальные условия для заданной системы .

Время слежения .

Задающее воздействие в виде системы ДУ

Начальные условия для воздействия:

.

Введем расширенный вектор состояния и расширенные матрицы

,

,

.

Тогда новое описание системы имеет вид:

с начальными условиями: .

Решением уравнения Риккати будет матрица:

с н.у.

Тогда оптимальное управление, находится по формуле:

Используя скрипт AKOR_slegenie_na_konech_interval_I_podxod, получили следующие результаты:

Рис.41. Графики решения уравнения Риккати.

Рис.42. Графики коэффициентов регулятора обратной и прямой связи.

Рис.43. Графики фазовых координат.

Рис.44. График управления.

Выводы: На данном этапе была решена задача АКОР-слежения. В качестве отслеживаемого воздействия была взята исходная система, но с другими начальными условиями, поэтому графики фазовых координат отличаются от заданных, но только на начальном участке движения.

5.5 Задача АКОР для отслеживания известного задающего воздействия. II подход (линейный сервомеханизм)

Система задана в виде:

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Начальные условия для заданной системы .

Задающее воздействие имеет вид:

, .

Время слежения

Введём вспомогательную вектор-функцию , ДУ которой определяется

,

,

НУ определяются из соотношения


Зная закон изменения  и , можно определить управление:

.

Используя скрипт AKOR_slegenie_na_konech_interval_II_podxod, получили следующие результаты:

Рис.45. Графики решения уравнения Риккати.

Рис.46. График задающего воздействия.

Рис.47. Графики коэффициентов регулятора обратной и прямой связи.

Рис.48. Графики фазовых координат.

Рис.49. График управления.


Выводы: На данном этапе была решена задача построения линейного сервомеханизма. В качестве отслеживаемого воздействия была задана экспоненциальная функция. Анализируя выше приведенные графики, можно сказать, что все состояния заданной системы, особенно первая фазовая координата, отслеживается с заданной точностью.

5.6 Задача АКОР – слежения со скользящими интервалами

Пусть интервал времени  является объединением нескольких отрезков. Известно некоторое задающее воздействие  заданное аналитическим выражением, причем информация о задающем сигнале на следующем отрезке времени поступает только в конце предыдущего. Таким образом, зная задающий сигнал только на одном отрезке времени, мы будем синтезировать управление на этом отрезке.

Разобьем весь интервал на 3 равных отрезка.

Данная задача похожа на задачу отслеживания известного задающего воздействия, заданного аналитическим выражением, но с некоторыми изменениями:

1.      Поскольку в уравнение Риккати относительно матрицы  входят только параметры системы и функционала качества, то решать его будем один раз на первом отрезке, так как на остальных отрезках решение будет иметь тот же вид, но будет смещено по времени:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.