рефераты бесплатно

МЕНЮ


Кинематический анализ механизма транспортирования ткани

YB шарнира B в проекциях на оси OX и OY;

8) (2 – функция положения угловой координаты направляющей ползуна В,

отсчитываемая относительно оси параллельной оси OX в положительном

направлении (против часовой стрелке) по углу (;

9) [pic]– первая и вторая передаточные функции угловой координаты (2 по

углу (;

Требуется определить:

1) (1 – функцию положения угловой координаты шарнира А звена AС группы по

углу (;

2) [pic] – первую и вторую передаточную функции угловой координаты (1 по

углу (;

3) L2 – расстояние от шарнира B ползуна 3 группы до точки С.

4) [pic] - первая и вторая передаточные функции по углу ( длины L2 в

проекциях на оси OX и OY;

5) XQ, YQ – функции положения координат точки Q, по углу ( в системе

координат OXY;

6) [pic] - первая и вторая передаточные функции по углу ( координат XС,

YС точки Q в проекциях на оси OX и OY системы координат OXY;

Блок-схема алгоритма кинематического анализа структурной группы второй

модификации представлена на рис. 1.3.12.. В блок-схеме используются

подпрограммы: определения углов в промежутке от 0 до 2( с учетом знака sin

и cos (см. блок 7); решения системы двух линейных уравнений методом Крамера

(см. блок 4).

1.3.6.Алгоритм программы определения величины шага транспортирования.

В результате кинематического анализа механизма транспортирования ткани

швейной машины на ЭВМ определяется ряд дискретных значений координат XQi и

YQi, [pic] (i — номер положения входного звена механизма) среднего зуба Q

рейки (в системе координат OXY), по которым может быть построена траектория

движения среднего зуба Q и определена величина шага транспортирования.

Задачу определения шага транспортирования сформулируем следующим образом:

Известны величины:

1) Таблица значений координат XQi и YQi, [pic]; среднего зуба Q рейки

относительно заданной неподвижной системы координат OXY (определены на

ЭВМ в результате кинематического анализа механизма транспортирования

ткани).

2) Высота H (см. рис. 1.3.11) уровня игольной пластины (задана

конструктором).

Требуется определить величину шага транспортирования Т.

Под шагом транспортирования будем понимать величину Т (см. рис.

1.3.11) — расстояние между точками А и В, образованными пересечением линии

игольной пластины Н—Н с траекторией движения среднего зуба рейки, т.е.:

[pic] (1.12)

При движении рейки по траектории против часовой стрелки (см. рис.

1.3.11,а) сшиваемые материалы будут перемещаться в сторону от работающего

(противоположную направлению оси OX), что соответствует прямой подаче.

Вычисленное по формуле (1.12) значение шага транспортирования в этом случае

будет положительно. В противном случае, при движении рейки по часовой

стрелке (см. рис. 2.13,б) сшиваемые материалы будут перемещаться по

направлению оси OX (в сторону на работающего), что соответствует обратной

подаче. Вычисленное по формуле (1.12) значение шага транспортирования в

этом случае будет отрицательно.

Для определения координаты XA точки А последовательно перебирая номера

положения входного звена механизма i от 1 до N, найдем такое значение i=k0,

при котором выполнялись бы следующие условия:

[pic] (1.13)

В том случае если [pic] (точка с координатами [pic] лежит на уровне

игольной пластины), то [pic]. Если же [pic], то координата XA определяется,

как координата пересечения прямой Y = Н и прямой проведенной через точки с

координатами [pic] и [pic] методом линейного интерполирования:

[pic]. (1.14)

Аналогичным образом определяем координату XB точки B. Последовательно

перебирая номера положения входного звена механизма i от 1 до N, найдем

такое значение i=k1, при котором выполняются следующие условия:

[pic] (1.15)

В том случае если [pic] (точка с координатами [pic] лежит на уровне

игольной пластины), то [pic]. Если же [pic], то координата XB определяется

как координата пересечения прямой Y = Н и прямой проведенной через точки с

координатами [pic] и [pic] методом линейного интерполирования:

[pic]. (1.16)

Блок-схема алгоритма определения шага транспортирования рейки

представлена на рис. 1.3.12,а. Поиск точек А и В (см. рис. 1.3.12)

пересечения траектории движения рейки с игольной пластиной происходит по

одинаковой схеме. Различны только условия поиска: для момента выхода рейки

над игольной пластиной это условие (1.13) - поиск точки А; для момента

ухода рейки под игольную пластину это условие (1.15) - поиск точки В.

Поэтому, алгоритм поиска координаты X точки пересечения целесообразно

выделить в отдельную подпрограмму (см. блоки 2 и 3, рис. 1.3.12,а). Блок-

схема подпрограммы поиска точки пересечения траектории движения рейки с

игольной пластиной представлена на рис. 1.3.12,б. В этой подпрограмме

организован цикл по параметру i (номеру положения входного звена механизма)

от 1 до N. В зависимости от того поиск какой точки задан в блоке 3

проверяется условие (1.13) — для точки А, или (1.15) — для точки B. Если

найден номер i удовлетворяющий условию блока 3, то этот номер запоминается

(блок 4) в переменной k. Далее в блоке 6 определяется лежит ли точка с

координатами XQk, YQk на игольной пластине, если условие блока 6

выполняется то подпрограмма возвращает координату X найденной точки, в

противном случае координата X точки пересечения траектории среднего зуба

рейки с игольной пластиной определяется интерполированием по формулам

(1.14) или (1.16) в зависимости от условий поиска поставленных в блоке 3.

Заметим, что формулы (1.14) и (1.16) отличаются только номером найденного

положения входного звена механизма k0 либо k1. Если в цикле (блоки 2—3) не

найден номер i, удовлетворяющий условию поиска блока 3, то в блоке 5

фиксируется отсутствие пересечения траектории движения среднего зуба рейки

с игольной пластиной.

7 Алгоритм головного модуля программы, объединяющего в себе описанные

подпрограммы в единую программу кинематического анализа.

Выше были разработаны алгоритмы и программное обеспечение для

кинематического анализа отдельных структурных групп Ассура, входящих в

состав реечных механизмов транспортирования ткани. Как правило, в этих

механизмах можно выделить узлы:

- горизонтальных перемещений рейки;

- вертикальных перемещений рейки;

- рейки.

Каждый из этих узлов может быть представлен в виде кинематической

цепи, состоящей из одной и более структурных групп Ассура, соединенных

между собой последовательно.

Чтобы произвести кинематический анализ произвольного реечного

транспортирующего механизма на ЭВМ с использованием разработанных выше

подпрограмм кинематического анализа отдельных структурных групп Ассура,

необходимо объединить указанные подпрограммы в единой программе – головном

модуле. Головной модуль должен выполнять следующие задачи: ввод необходимых

для кинематического анализа механизма исходных данных, кинематический

анализ механизма, вывод результатов счета. Исходными данными для

кинематического анализа механизма являются его структурная схема,

геометрические размеры звеньев и координаты неподвижных опор.

Кинематический анализ производится головным модулем путем вызова на

выполнение подпрограмм анализа отдельных структурных групп Ассура в

установленной пользователем согласно структурной схеме анализируемого

механизма последовательности. Вывод данных, полученных в результате

анализа, как правило, удобнее всего производить в форме таблиц и графиков.

Основной и наиболее ответственной частью головного модуля является

непосредственно кинематический анализ механизма. Для разработки указанного

алгоритма необходимо установить последовательность кинематического анализа

групп Ассура, входящих в структурную схему транспортирующего механизма.

Алгоритм кинематического анализа всего механизма, можно составить путем

последовательного анализа кинематических цепей узлов: горизонтальных

перемещений, вертикальных перемещений, узла рейки. Структура такого

алгоритма представлена на рис. 1.3.13. Согласно данному алгоритму

кинематический анализ каждой из указанных кинематических цепей узла должен

представлять собой последовательный анализ отдельных структурных групп

Ассура, входящих в эту цепь, в порядке их присоединения друг к другу.

Для обеспечения понимания структуры головного модуля алгоритма

кинематического анализа реечного транспортирующего механизма рассмотрим его

на конкретном примере. Рассмотрим алгоритм кинематического анализа

механизма транспортирования ткани швейной машины 2222 кл. (см. рис.

1.3.14). На основании анализа структурной схемы этого механизма в нем можно

выделить кинематические цепи узлов: подачи - O1ABO2, подъема – O1DEO3 и

рейки (рычаг CF и ползун F). Разобьем указанные кинематические цепи на

структурные группы Ассура. Кинематическая цепь узла подачи (O1ABO2) состоит

из кривошипа O1A с присоединенной к нему структурной группой первой

модификации ABO2. Кинематическая цепь узла подъема (O1DEO3) состоит из

кривошипа O1D с присоединенной к нему структурной группой первой

модификации DEO3. Узел рейки представляет собой структурную группу третьей

модификации (шатун CF и ползун F). Согласно описанной выше общей структуре,

блок-схема алгоритма кинематического анализа рассматриваемого механизма

транспортирования может иметь вид, представленный на рис. 1.3.15. Данный

алгоритм предполагает использование подпрограмм кинематического анализа:

кривошипа (блоки 4, 7), структурной группы первой модификации (блоки 5, 8),

звена (блоки 6, 9, 11), структурной группы третьей модификации (Алгоритм

анализа структурной группы третьей модификации может быть составлен по

аналогии с алгоритмами анализа структурных групп первой или второй

модификаций) (блок 10), определения шага транспортирования (блок 12).

Аналогичным образом может быть построен алгоритм головного модуля

программы кинематического анализа других механизмов транспортирования,

имеющих схожую структуру. Однако ряд механизмов транспортирования ткани в

составе узла горизонтальных перемещений рейки содержат узел регулирования

шага транспортирования, позволяющий изменять направление подачи материала

на ходу машины. При составлении алгоритма кинематического анализа подобных

механизмов целесообразно узел регулирования шага транспортирования

рассматривать как отдельную кинематическую цепь.

Рассмотрим, например, механизм транспортирования ткани швейной машины

1022 кл. (см. рис. 1.3.16). Структура узлов вертикальных перемещений и

рейки в данном механизме аналогична рассмотренному выше механизму 2222 кл.

Однако в рассматриваемом механизме предусмотрен узел регулирования шага

транспортирования и направления подачи. Выделим узел регулирования в

отдельную кинематическую цепь. Тогда узел горизонтальных перемещений рейки

можно представить в виде кинематической цепи состоящей из кривошипа O1A с

последовательно присоединенными к нему двумя структурными группами первой

модификации ABG и BLO2. Узел регулирования шага транспортирования может

быть представлен в виде кинематической цепи состоящей из рычага-регулятора

O5P с присоединенной к нему в шарнире H структурной группой первой

модификации HGO4. Блок-схема алгоритма кинематического анализа данного

механизма может иметь вид, представленный на рис. 1.3.17. Данный алгоритм

предполагает использование подпрограмм кинематического анализа: кривошипа

(блоки 6, 10), структурной группы первой модификации (блоки 5, 7, 8, 11),

третьей модификации (блок 13), анализа звена (блоки 9, 12, 14), определения

шага транспортирования (блок 15). С необходимыми поправками на тип

структурных групп рассмотренный алгоритм может быть использован при

разработке головного модуля программ кинематического анализа других

транспортирующих механизмов со схожей структурой, например, механизмов

транспортирования швейных машин 97 кл.

Последовательность кинематического анализа узлов горизонтальных и

вертикальных перемещений рейки при анализе механизмов рассмотренных типов

не имеет значения, т.е. можно произвести сначала кинематический анализ узла

горизонтальных перемещений рейки, потом узла вертикальных перемещений, а

можно и наоборот. Анализ же кинематической цепи узла рейки не может быть

произведен без анализа узлов горизонтальных и вертикальных перемещений.

Если в транспортирующем механизме рейка располагается непосредственно на

узле вертикальных перемещений последовательность анализа узлов вертикальных

и горизонтальных перемещений имеет существенное значение.

Например, в механизме транспортирования ткани швейной машины 66 кл.

(см. рис. 1.3.20) кинематическая цепь узла горизонтальных перемещений рейки

состоит из кривошипа O1A и присоединенной к нему структурной группой первой

модификации ABO2. Узел вертикальных перемещений рейки может быть

представлен в виде кинематической цепи, состоящей из кривошипа O3D и

структурной группы первой модификации DEC, причем на звене EC этой группы

расположена рейка Q. Последовательность кинематического анализа данного

механизма должна быть такой. Вначале производится анализ кинематической

цепи узла горизонтальных перемещений. Затем анализ кинематической цепи узла

вертикальных перемещений. Указанная последовательность объясняется тем, что

для проведения кинематического анализа узла вертикальных перемещений рейки

необходимо знать функцию положения, первую и вторую передаточные функции

координат шарнира C структурной группы DEC, которые не могут быть

определены без предварительного анализа узла горизонтальных перемещений.

Блок-схема алгоритма кинематического анализа рассматриваемого механизма

представлена на рис. 1.3.21. Данный алгоритм предполагает использование

подпрограмм кинематического анализа: кривошипа (блоки 4, 7), структурной

группы первой модификации (блоки 5, 8), анализа звена (блоки 6, 9),

определения шага транспортирования (блок 11).

Дифференциальные реечные механизмы транспортирования ткани

характеризуются тем, что привод основной и дополнительной реек

осуществляется разными кинематическими цепями. При составлении алгоритма

кинематического анализа указанных механизмов возможны два способа. Первый

способ состоит в том, чтобы дифференциальный механизм транспортирования

ткани условно разбить на два механизма транспортирования соответственно

основной и дополнительной реек. В каждом из этих механизмов можно выделить

узлы горизонтальных, вертикальных перемещений, рейки, регулирования шага

транспортирования. По аналогии с рассмотренными выше алгоритмами анализа

однореечных механизмов в этом случае следует составить два алгоритма

кинематического анализа механизмов транспортирования соответственно

основной и дополнительной реек. Рассмотренный способ можно применить,

например, для составления алгоритма кинематического анализа механизма

транспортирования ткани швейной машины 208 кл. (см. рис. 1.3.20). Данный

механизм транспортирования может быть разбит на механизмы

транспортирования: основной (см. рис. 1.3.20,а) и дополнительной реек (см.

рис. 1.3.20,б). Разбивая указанные механизмы на кинематические цепи,

отметим, что привод вала подачи O2 в рассматриваемом механизме одинаков как

для основной, так и для дополнительной реек и может быть представлен в виде

кинематической цепи состоящей из кривошипа O1A и структурной группы первой

модификации ABO2. Алгоритм анализа всего дифференциального

транспортирующего механизма представлен на рис. 1.3.21. Данный алгоритм

предполагает использование подпрограмм кинематического анализа: кривошипа

(блок 4), структурной группы первой модификации (блок 5), анализа звена

(блоки 6, 8, 12), структурной группы второй модификации (блок 10),

трехповодковой структурной группы (блоки 7, 11), определения шага

транспортирования Т1 и Т2 соответственно основной Q и дополнительной N реек

(блоки 13, 14). Вычисления по данному алгоритму завершаются определением

степени дифференцирования подачи (=Т2/Т1 (см. блок 15).

Второй способ составления алгоритма кинематического анализа

дифференциальных реечных механизмов транспортирования наиболее применим для

механизмов, в которых рычаг дополнительной рейки совершает движения в

направляющих основной рейки (см. механизм транспортирования на рис.

1.3.22,). В подобных механизмах привод вертикальных перемещений основной и

дополнительной реек, как правило, одинаков. При составлении алгоритма

кинематического анализа из состава всего дифференциального механизма

необходимо выделить механизм основной рейки. Разбив выделенный механизм на

кинематические цепи привода горизонтальных и вертикальных перемещений,

составить алгоритм его кинематического анализа. После этого выделить

кинематическую цепь привода дополнительной рейки и добавить алгоритм

кинематического анализа этой цепи к алгоритму кинематического анализа

механизма основной рейки. Составленный таким образом алгоритм

кинематического анализа дифференциального механизма транспортирования ткани

швейной машины 876 кл. представлен на рис.1.3.23. В рассматриваемом

механизме привод основной рейки Q (см. рис. 1.3.22) может быть разбит на

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.