рефераты бесплатно

МЕНЮ


Курсовая работа: Расчет редуктора точного прибора

Uрг = Z2·Z4·Z6·Z8·Z10/ Z1·Z3·Z5·Z7·Z9

Определим погрешность придаточного отношения:

= (Uр-Uрг/Uр) · 100% 3%,

т.е. число зубьев колёс выбрано правильно.

С учетом полученных данных строим кинематическую схему редуктора.


4. Расчет кинематики и геометрии

Основой для проведения расчетов является выбранный модуль и число зубьев колес.

4.1 Расчет кинематики редуктора

Расчет ведем по следующим формулам:

Uk= n2k-1/n2k= W2k-1/W2k

Wk= Tihk/30

Mk+1= Mk·Uk

M2= M1·U1= 25·10-4·1,8= 0,0045

M3= M2·U2= 0,0045·2= 0,009

M4= M3·U3= 0,009·2,2= 0,0198

M5= M4·U4= 0,0198·2,4= 0,04752

M6= M5·U5= 0,04752·2,8= 0,133056

n1=2052

n2= n1/U1= 2052/1,8= 1140

n3= n2/U2= 1140/2= 570

n4= n3/U3= 570/2,2= 259

n5= n4/U4= 259/2,4= 108

n6=n5/U5= 108/2,8= 38

Wk= Tihk/30≈0,1

W1= n1·Wk= 2052·0,1= 205,2

W2= n2·Wk= 1140·0,1= 114,0

W3= n3·Wk= 570·0,1= 57,0

W4= n4·Wk= 259·0,1= 25,9

W5= n5·Wk= 108·0,1= 10,8

W6= n6·Wk= 38·0,1= 3,8

Полученные данные занесем в таблицу 2

Nвал

nвх

Wвх

М
1 2052 205,2 0,0025
2 1140 114,0 0,0045
3 570 57,0 0,009
4 259 25,9 0,0198
5 108 10,8 0,04752
6 38 3,8 0,133056

4.2 Геометрия

Воспользуемся следующими формулами:

d= mz – для делительной окружности

De= d+2m – диаметр выступа

Db= d-3m – диаметр впадины

a= m(z1+z2+…)/2 – межцентровое расстояние, z1– шестерня,

z2– колесо

b= (3…15)m – ширина венца

h= 2,5m – высота зуба

Предварительно выбираем значение модуля по Госту 9563–60

m= 0,3

Определим делительные окружности:

d1,3,5,7,9= mz1= 0,3·24= 7,2

d2= mz2= 0,3·43= 12,9

d4= mz4= 0,3·49= 14,7

d6= mz6= 0,3·54= 16,2

d8= mz8= 0,3·55= 16,5

d10= mz10= 0,3·68= 20,4

Определим диаметр выступа:

De1,3,5,7,9= d1,3,5,7,9+2m= 7,2+0,6= 7,8

De2= d2+2m= 12,9+0,6= 13,5

De4= d4+2m= 14,7+0,6= 15,3

De6= d6+2m= 16,2+0,6= 16,8

De8= d8+2m= 16,5+0,6= 17,1

De10= d10+2m= 20,4+0,6= 21

Определим диаметр впадины:

Db1,3,5,7,9= d1,3,5,7,9-3m= 7,2-0,9= 6,3

Db2= d2-3m= 12,9-0,9= 12,0

Db4= d4-3m= 14,7-0,9= 13,8

Db6= d6-3m= 16,2-0,9= 15,3

Db8= d8-3m= 16,5-0,9= 15,6

Db10= d10-3m= 20,4-0,9= 19,5

Определить межцентровое расстояние:

a1= m(z1+z2)/2= 0,3(24+43)/2= 10,05

a2= m(z1+z2)/2= 0,3(24+49)/2= 10,95

a3= m(z1+z2)/2= 0,3(24+54)/2= 11,7

a4= m(z1+z2)/2= 0,3(24+55)/2= 11,85

a5= m(z1+z2)/2= 0,3(24+68)/2= 13,8


Определим ширину венца:

b= (3…15)m= 10·0,3= 3

Определим высоту зуба:

h= 2,5m= 2,5·0,3= 0,75


5. Разработка конструкций редуктора

Разработка конструкции состоит в расчете и выборе его элементов: зубчатые колеса, валы, подшипники и корпуса.

ОБЩАЯ ХАРАКТЕРИСТИКА ВАЛОВ И ОСЕЙ

Назначение и классификация. Поддержания вращающихся деталей для передачи вращающего момента одной детали к другой (в осевом направлении) в конструкциях используют детали в форме тел вращения, называемые валами. В зависимости от вида испытываемой деформациусловно различают:

простые валы (валы) — работают в условиях кручения, изгиба и растяжения (сжатия), их применяют в передачах: зубчатых, ременных и др.;

торсионные валы (торсионы) — работают лишь в условиях кручения, т. е. передают только вращающий момент, соединяя обычно два вала на индивидуальных опорах;

оси — поддерживающие невращающиеся валы, работающие лишь в условиях изгиба и реже растяжения (сжатия.).

В зависимости от распределения нагрузок вдоль оси вала и условий сборки прямые валы выполняют гладкими или ступенчатыми, близкими по форме к балкам равного сопротивления изгибу. Гладкие валы более технологичны.

В специальных машинах (поршневых двигателях и компрессорах) используют коленчатые валы, имеющие «ломаную» ось.

Для передачи вращающего момента (вращения) между агрегатами со смещенными в пространстве осями входного и выходного валов применяют специальные гибкие валы, имеющие криволинейную геометрическую ось при работе. Такие валы обладают высокой жесткостью при кручении и малой жесткостью при изгибе.

В зависимости от расположения, быстроходности и назначения валы называю входными, промежуточными, выходными, тихо - или быстроходными, распределительными и т. п.

5.1 Выбор конструкции цилиндрических зубчатых колес

Конструкция определяется ГОСТом 13755-81

Для улучшения работоспособности тяжелонагруженных и высокоскоростных цилиндрических зубчатых передач- внешнего зацеплений рекомендуется применять исходный контур с модификацией профиля головки зуба, при этом линия модификации — прямая, коэффициент высоты модификации hg должен быть не более 0,45, а коэффициент глубины модификации * — не более 0,02.

Параметры модификации .профиля головки зуба исходного контура приведены в справочном приложении. Для передач, к которым предъявляются специальные требования, допускается применение исходных контуров, отличающихся от установленных настоящим стандартом, параметры которых должны устанавливаться в отраслевых стандартах. Допускается изготавливать зубчатые колеса винтовых передач в соответствии с исходным -контуром, установленным настоящим стандартом.

Зубчатые колеса рекомендуется изготавливать без модификации профиля головки зуба, если в результате модификации головки величина части коэффициента торцевого перекрытия, определяемая участками главных профилен ε ам, скажется менее 1,1 у прямозубых передач. Зубчатые колеса передач внутреннего зацепления могут изготавливаться в соответствии с исходным контуром.

При окончательной обработке боковых поверхностей зубьев зубообрабатывающим инструментом следует с практически возможным приближением обеспечивать параметры модификации и переходные кривые, при этом действительная высота модификации головки зуба должна быть не более номинальной.

В технически обоснованных случаях, при массовом и крупносерийном производстве и для передач точнее 6-й степени точности рекомендуется изменение параметров модификации применительно к частным условиям работы передачи.

5.2 Конструктивное выполнение и использование валов

 - диаметр вала по моменту кручения

[kp]=(15…20) H/мм2

dв1 0,9≈1

dв2 1,1≈1

dв3 1,4≈1,5

dв4 1,8≈2

dв5 2,4≈2,5

dв6 3,4≈3

5.3 Выбор и расчет опор

ОПОРЫ ВАЛОВ И ОСЕЙ

ОБЩАЯ ХАРАКТЕРИСТИКА ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

Общие сведения. Подшипник скольжения является парой вращения, он состоит из опорного участка вала (цапфы) и собственно подшипника котором.

Их используют в качестве опор валов и осей механизмов и машин в тех случаях, когда применение подшипников качения затруднено или невозможно по ряду причин: высокие вибрационные и ударные нагрузки; низкие и особо высокие частоты вращения; работа в воде, агрессивных средах, а также при недостаточном смазывании или без смазывания; необходимость выполнения диаметрального разъема; отсутствие подшипников качения требуемых диаметров (миниатюрные и особо крупные валы) и др.

Надежность работы подшипников в значительной мере определяет работоспособность и долговечность машин.

Благодаря бесшумности и указанным выше достоинствам, а также по конструктивным и экономическим соображениям опоры скольжения находят широкое применение в паровых и газовых турбинах, двигателях внутреннего сгорания, центробежных насосах, центрифугах, металлообрабатывающих станках, прокатных станах, тяжелых редукторах и пр.

По виду трения скольжения различают:

подшипники сухого трения — работают на твердых смазочных материалах без смазочного материала;

подшипники граничного (полужидкостного) трения;

подшипники жидкостного трения

подшипники с газовой смазкой.

По виду воспринимаемой нагрузки и подшипники подразделяю на-

радиальные — воспринимают радиальную нагрузку

упорные — воспринимают осевые силы

радиально-упорные — воспринимают радиальные и осевые нагрузки; обычно их функции выполняют упорные подшипники, совмещенные с радиальными.

Цапфу, передающую радиальную нагрузку, называют шагом — при расположении ее в конце вала и шейкой — если она находится в середине вала. Цапфу, передающую осевую нагрузку, называют пятой, а подшипник подпятником.

Форма рабочей поверхности подшипников и цапф может быть цилиндрической, конической и шаровой. Конические и шаровые подшипники применяются редко.

Самое главное требование- малое трение

При выборе шарикоподшипников исходят из усилия, возникающие при зацеплении зубчатых колес.

При выборе шарикоподшипников исходят из усилий, возникающих при зацеплении зубчатых колес. Для цилиндрической передачи это усилие:

- окружное усилие

- радиальное усилие

где

Радиальная сила направлена к центру зубчатого колеса.

Подшипники выбираются в зависимости от действующих нагрузок, так как здесь действует радиальная сила. Выбор ведется по внутреннему диаметру подшипника ГОСТ 8338 – 75: получаем, что первому валу соответствует подшипник 1000091, второму валу – 1000091/1,5, третьему – 1000092, четвертому – 1000093.

Правильность выбора подшипника определяется по его динамической грузоподъемности. Для этого используется следующая формула:

- долговечность в часах

где С - динамическая грузоподъемность, n – число оборотов, Р – эквивалентная динамическая нагрузка. А Р, в свою очередь, вычисляется по формуле:

где Х – коэффициент нагрузки, V – коэффициент вращения, Кб – коэффициент безопасности, КТ – температурный коэффициент.

Для прямозубых цилиндрических передач:

Х = V = Кб = КТ =1,

- грузоподъемность,

Вычислим окружное усилие, радиальное усилие, грузоподъемность и результаты запишем в таблицу 3

№ колеса Окружное усилие, Н Радиальное усилие, Н Грузоподъемность, Н
1 6 2,18 25,6
2 13 4,73 55,5
3 33 12 140,8
4 93 34 399,16

Ft= 2Mкр/d – окружное усилие

Ft1= 2*0,0025/0,001= 5

Ft2 2*0,0045/0,001= 9

Ft3 2*0,009/0,0015= 12

Ft4 2*0,0198/0,002= 19,8

Ft5 2*0,04752/0,0025= 38,016

Ft6 2*0,133056/0,003= 88,704

F= Ft·tg – радиальное усилие

F1= 5·tg20= 1,82

F2= 9·tg20= 3,28

F3= 12·tg20= 4,37

F4= 19,8·tg20= 7,21

F5= 38,016·tg20= 13,84

F6= 88,704·tg20= 32,29

Для прямозубых цилиндрических передач:

X=V= Kб= Kt=1

C=F6

L=104 час

CCтабл

C1=1,826=0,005

C2=3,286=0,0075

C3=4,376=0,01

C4=7,216=0,019

C5=13,846=0,0349

C6=32,296=0,068


5.4 Определение КПД

ηр=η1·η2·η3·η4·η5

ηi=1-cπf(1/z1+1/z2)*1/2

f=0,15

c= (F+2,87)/( F+0,17)

c1=(1,82+2,87)/(1,82+0,17)= 2,36

 c2=(3,28+2,87)/(3,28+0,17)=1,78

c3=(4,37+2,87)/(4,37+0,17)=1,59

c4=(7,21+2,87)/(7,21+0,17)=1,37

c5=(13,84+2,87)/(13,84+0,17)=1,19

η1=1-1,82*3,14*0,15(1/24+1/43)*1/2= 0,96

η2=1-1,78*3,14*0,15(1/24+1/49)*1/2= 0,97

η3=1-1,59*3,14*0,15(1/24+1/54)*1/2= 0,97

η4=1-1,37*3,14*0,15(1/24+1/55)*1/2= 0,98

η5=1-1,19*3,14*0,15(1/24+1/68)*1/2= 0,98

ηр=η1·η2·η3·η4·η5

ηр=0,96·0,97·0,97·0,98·0,98= 0,87=87%


Заключение

При проектировании редуктора находят практические приложения такие важнейшие сведения из курса, как расчеты на контактную и объемную прочность, тепловые расчеты, выбор материалов и термообработок, масел, посадок, параметров шероховатости поверхности и т. д. При выборе типов передач, вида зацепления, механических характеристик материалов надо учитывать, что затраты на материалы составляют значительную часть стоимости машин: в редукторах общего назначения -85 %, в дорожных машинах — 75 %, в автомобилях — 70 % и т. д. Таким образом, изыскание путей снижения массы проектируемых объектов является важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов. Уместно отметить, что большая часть вырабатываемой в настоящее время энергии проходит через механические передачи, поэтому их КПД в известной степени определяет эксплуатационные расходы.

Наиболее полно требованиям снижения массы и габаритных размеров удовлетворяет привод с использованием планетарных передач. Этому виду передач посвящено большое внимание.


Список используемой литературы:

1. “Прикладная механика” авторы: Г.Б.Иосилевич, Г.Б.Строганов

2. П.Д.Дунаев, О.П.Леликов ”Конструирование узлов и деталей машин”

3. В.Н.Кудрявцева ”Курсовое проектирование деталей машин”


Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.