рефераты бесплатно

МЕНЮ


Курсовая работа: Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол

Рис.1.12. Схема работы колпачковой тарелки.

 

1.4.2 Ситчатые колонны

Колонны этого типа (см. рис. 1.13) состоят из вертикального цилиндрического корпуса 1 с горизонтальными тарелками 2, в которых просверливается значительное число мелких отверстий, равномерно распределенных по всей поверхности тарелки. Для слива жидкости и регулирования ее уровня на тарелке служат переливные трубки 3. Нижние концы трубок 3 погружены в стаканы 4 на лежащих ниже тарелках и образуют гидравлические затворы.

Рис. 1.13. Схема устройства ситчатой колонны: 1 – корпус; 2 – ситчатая тарелка; 3 – переливная трубка; 4 – стакан.

Пар проходит через отверстия тарелки (см. рис. 1.14) и распределяется в жидкости в виде мелких струек; лишь на некотором расстоянии от дна тарелки образуется слой пены и брызг – основная область массообмена и теплообмена на тарелке.

Рис. 1.14. Схема работы ситчатой тарелки.

В определенном диапазоне нагрузок ситчатые тарелки обладают большим к.п.д., чем колпачковые. Однако допустимые нагрузки по жидкости и пару для ситчатых колонн относительно невелики. При слишком малой скорости пара (около 0,1 м/сек) происходит просачивание жидкости через отверстия тарелки и в связи с этим резкое падение к.п.д. тарелки.

Давление и скорость пара, проходящего через отверстия сетки, должны быть достаточными для преодоления давления слоя жидкости на тарелке и должны препятствовать ее стекания через отверстия.

Проскок жидкости у ситчатых тарелок возрастает с увеличением диаметра тарелки и отклонением ее от строго горизонтального положения. Поэтому диаметр и число отверстий следует подбирать так, чтобы жидкость удерживалась на тарелках и не увлекалась механически паром. Обычно диаметр отверстий ситчатых тарелок принимают равным 0,8 – 3 мм.

Ситчатые колонны эффективно работают только при определенных скоростях ректификации, и регулирование режима их работы затруднительно. Кроме того, ситчатые тарелки требуют весьма тщательной горизонтальной установки, так как иначе пары будут проходить через часть поверхности сетки, не соприкасаясь с жидкостью.

Ситчатые тарелки уступают колпачковым по допустимому верхнему пределу нагрузки; при значительных нагрузках потеря напора в них больше, чем у колпачковых.

При внезапном прекращении подвода пара или значительном снижении его давления тарелки ситчатой колонны полностью опоражниваются от жидкости, и требуется заново запускать колонну для достижения заданного режима ректификации.

Очистка, промывка и ремонт ситчатых тарелок производятся относительно удобно и легко.

Чувствительность к колебаниям нагрузки, а также загрязнениям и осадкам, которые образуются при перегонке кристаллизующихся веществ и быстро забивают отверстия тарелки, ограничивают область использования ситчатых колонн; их применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки).

Для повышения к.п.д. в ситчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром.


2. Теоретические основы расчета тарельчатых ректификационных колонн

Известно два основных метода анализа работы и расчета ректификационных колонн: графоаналитический (графический) и аналитический. Существуют некоторые допущения, мало искажающие действительный процесс, но существенно упрощающие его анализ и расчет:

1.молярные теплоты испарения компонентов при одной и той же температуре приблизительно одинаковы, поэтому каждый кмоль пара при конденсации испаряет 1 кмоль жидкости. Следовательно, количество поднимающихся паров в любом сечении колонны одинаково;

2.в дефлегматоре не происходит изменения состава пара. Состав пара, уходящего из ректификационной колонны, равен составу дистиллята;

3.при испарении жидкости в кипятильнике не происходит изменения ее состава;

4.теплоты смешения компонентов разделяемой смеси равны 0.

 

2.1 Материальный баланс ректификационной колонны

Согласно схеме на рис. 2.15 в колонну поступает F кмоль исходной смеси, состав которой хF в мольных долях низкокипящего компонента. Сверху из колонны удаляется G кмоль паров, образующих после конденсации флегму и дистиллят. Количество получаемого дистиллята D кмоль, его состав хD в мольных долях низкокипящего компонента. На орошение колонны возвращается флегма в количестве Ф кмоль, причем ее состав равен составу дистиллята (хф=xD в мольных долях). Снизу из колонны удаляется W кмоль остатка состава xw в мольных долях низкокипящего компонента. Тогда уравнение материального баланса колонны имеет вид:

Ф+F=G+W                                                         (2.14)

Поскольку G=D+Ф, то

F=D+W                                                     (2.15)

Соответственно по низкокипящему компоненту материальный баланс имеет вид:

FxF=DxD+WxW                                                                                     (2.16)

Концентрации питания, дистиллята и кубового остатка в мольных долях рассчитываются по формулам:

Питание:

, где                                                        (2.17)

 – мольные массы бензола и толуола.

Дистиллят:

                                                                (2.18)

Кубовый остаток:

                                            (2.19)

 

Рис. 2.15. К составлению материального баланса ректификационной колонны: 1 – куб–испаритель; 2 – колонна; 3 – дефлегматор.

2.2. Расчет флегмового числа

Нагрузки ректификационной колонны по пару и жидкости определяются рабочим флегмовым числом R (R=Ф/D).

Используют приближенные вычисления, основанные на определении коэффициента избытка флегмы (орошения) Z=R/Rmin. Здесь Rmin – минимальное флегмовое число:

, где                                                                (2.20)

хF и хD – мольные доли легколетучего компонента соответственно в исходной смеси и дистилляте, кмоль/кмоль смеси; y*F – концентрация легколетучего компонента в паре, находящемся в равновесии с исходной смесью, кмоль/кмоль смеси.

Один из возможных приближенных методов расчета R заключается в нахождении такого флегмового числа, которому соответствует минимальное произведение N´(R+1), пропорциональное объему ректификационной колонны (N – число ступеней изменения концентраций или теоретических тарелок, определяющее высоту колонны, а (R+1) – расход паров и, следовательно, сечение колонны).

При отсутствии данных о коэффициенте избытка флегмы для разделяемых смесей можно применять эмпирическую зависимость:

R=1,3·Rмин+0,3                                                   (2.21)

Более точный метод расчета Rопт предполагает знание приведенных затрат и учет расходов, связанных с подачей сырья и подводом теплоты в колонну и организацией ее орошения, а также стоимость колонны и вспомогательного оборудования.

Рис. 2.16. К определению оптимального флегмового числа: 1 – эксплуатац. расходы; 2 – капитальные затраты; 3 – общие затраты на ректификацию.

2.3. Уравнения рабочих линий

y=                                               (2.22)

Зависимость (2.22) является уравнением рабочей линии укрепляющей части колонны. В этом уравнении  – тангенс угла наклона рабочей линии к оси абсцисс, а – отрезок, отсекаемый верхней рабочей линией на оси ординат.

, где f=F/D                                              (2.23)

Зависимость (2.22) представляет собой уравнение рабочей линии исчерпывающей части колонны. В этом уравнении – тангенс угла наклона рабочей линии к оси ординат, а  – отрезок, отсекаемый нижней рабочей линией на оси абсцисс. Умножив числитель и знаменатель выражений для А' и А на количество дистиллята D, можно заметить, что они представляют собой отношения количеств жидкой и паровой фаз, или удельный расход жидкости, орошающей данную часть колонны.

 

2.4. Определение числа тарелок и высоты колонны

Наносим на диаграмму y–x рабочие линии верхней и нижней части колонны рис. 2.17 и находим число ступеней изменения концентрации nТ.

Рис. 2.17. Графическое определение числа теоретических тарелок:

ОE – равновесная кривая, АВ и ВС – рабочие линии для укрепляющей в исчерпывающей частей колонны, 1–6 – тарелки.

Число тарелок рассчитывается по уравнению:

                                                   (2.24)

Для определения среднего к.п.д. тарелок  находим коэффициент относительной летучести разделяемых компонентов при средних температурах для верхней и нижней частей колонны:

Для верхней части:

                                                 (2.25)

Для нижней части:

                                               (2.26)

Величина среднего к.п.д. тарелок , который зависит от многих переменных величин (конструкция и размеры тарелки, гидродинамические факторы, физико-химические свойства пара и жидкости). На рис. 2.18 приведены значения среднего к.п.д. тарелок, полученные по опытным данным для промышленных ректификационных колонн сравнительно небольшого диаметра. По оси абсцисс на этом графике отложены произведения коэффициента относительной летучести разделяемых компонентов α на динамический коэффициент вязкости жидкости питания μ (в мПа·с) при средней температуре в колонне.

Рис. 2.18. Диаграмма для приближенного определения среднего к.п.д. тарелок.

Определение вязкости жидкости (смеси) в верхней и нижней частях колонны а) в верхней части колонны:

                       (2.27)

б) в нижней части колонны:

                              (2.28)

Определение вязкости пара:

а) в верхней части колонны:

                                             (2.29)

б) в нижней части колонны:

                                 (2.30)

Число действительных тарелок:

а) в верхней части колонны:

                                     (2.31)

б) в нижней части колонны:

                                                      (2.32)

Высота тарельчатой колонны:

                                               (2.33)

где h – расстояние между тарелками,

ZВ – расстояние между верхней тарелкой и крышкой колонны,

ZН – расстояние между нижней тарелкой и днищем колонны,

N – число действительных тарелок.

 

2.5. Определение средних массовых расходов пара и жидкости в верхней и нижней частях колонны

 

Ø  Определение среднего мольного состава жидкости в верхней и нижней частях колонны:

а) в верхней части колонны:

                                                           (2.34)

б) в нижней части колонны:

                                                           (2.35)

Ø  Определение среднего мольного состава пара в верхней и нижней частях колонны:

а) в верхней части колонны:

                                                              (2.36)

б) в нижней части колонны:

                                                    (2.37)

Ø  Средние мольные массы жидкости в верхней и нижней частях колонны:

а) в верхней части колонны:

                                        (2.38)

б) в нижней части колонны:

                                       (2.39)

Ø  Определение средних мольных масс пара в верхней и нижней частях колонны: а) в верхней части колонны:

                                      (2.40)

б) в нижней части колонны:

                                     (2.41)

Ø  Определение средней плотности пара в верхней и нижней частях колонны:

                                             (2.42)

                                  (2.43)

Ø  Средняя плотность пара в колонне:

Ø 

                                                            (2.44)

Ø  Средняя плотность жидкости в колонне:

Ø 

                                                              (2.45)

Ø  Определение средней плотности жидкости в верхней и нижней частях колонны:

                                        (2.46)

                                       (2.47)

Ø  Определение мольной массы исходной смеси и дистиллята:

                                             (2.48)

                                            (2.49)

Ø  Расчет средних массовых расходов по жидкости для верхней и нижней частей колонны:

Ø 

                                                                (2.50)

                                              (2.51)

Ø  Расчет средних массовых расходов пара для верхней и нижней частей колонны:

                                                       (2.52)

                                                       (2.53)

2.6. Определение скорости пара и диаметра колонны

Эффективность работы тарельчатых колонн в значительной степени зависит от скорости пара в свободном сечении колонны. Эта скорость зависит от физико-химических свойств взаимодействующих фаз (плотность, вязкость, поверхностное натяжение и др.) и конструктивных особенностей колонны. Оптимальная величина скорости может быть установлена в каждом отдельном случае только опытным путем. В общем случае предельно допустимая скорость пара в колонне должна быть несколько меньше скорости, соответствующей явлению «захлебывания» колонны, когда восходящий поток пара начинает препятствовать стеканию жидкости по тарелкам. В колоннах, работающих при атмосферном давлении, скорость пара обычно принимают 0.3–0.6 м/с; эта скорость непосредственно связана со скоростью в отверстиях тарелок, которую следует выбирать в пределах 2–6 м/с.

Скорость паров в колоннах может быть повышена при увеличении расстояния между тарелками или применении специальных устройств в виде отбойников, позволяющие уменьшить сепарационный объем между тарелками.

При больших скоростях происходит увеличение потоком пара жидкости с нижележащих тарелок на тарелки, лежащие выше, т.е. механический унос жидкости, и слияние отдельных пузырьков пара в струю, и в результате этого уменьшается поверхность контакта фаз и длительность контакта.

Расчет рабочей скорости пара в верхней и нижней частях колонны по уравнению:

а) в верхней части колонны:

                                                                (2.54)

б) в нижней части колонны:

                                                               (2.55)

где С – коэффициент, зависящий от конструкции тарелок, расстояния между тарелками, рабочего давления в колонне, нагрузки колонны по жидкости.


Рис. 2.19. Значения коэффициента С: А, Б – колпачковые тарелки с круглыми колпачками;В – ситчатые тарелки.

Диаметр колонны определяется по уравнению:

а) в верхней части колонны:

                                               (2.56)

 б) в нижней части колонны:

                                             (2.57)

Скорость пара в колонне при стандартном диаметре:

а) в верхней части колонны:

                                                        (2.58)

Страницы: 1, 2, 3, 4, 5, 6, 7


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.