рефераты бесплатно

МЕНЮ


Дипломная работа: Схема автоматического регулирования продолжительности выпечки с коррекцией по температуре во второй зоне пекарной камеры

Регулирование таким способом может осуществляться плавно, в широком диапазоне, в обе стороны от естественной характеристики, т.е. АД может иметь скорость как больше, так и меньше номинальной. При этом регулировочные характеристики имеют высокую жесткость, а АД сохраняет большую перегрузочную способность.

Во многих случаях хорошие показатели регулирования могут быть достигнуты в разомкнутой системе. При повышенных требованиях к электроприводу необходимо использование тех или иных обратных связей, т.е. применение замкнутой системы регулирования. Получаемый диапазон регулирования скорости в разомкнутых системах составляет 5-10, а в замкнутых его значение может достигать 1000 и более.

Из всех вышеперечисленных способов управления АД выбираем частотное регулирование, т.к.:

а) Система ПЧ-АД позволяет производить плавный пуск электропривода, что позволяет избежать механических колебаний в кинематической цепи, повышает ее надежность и срок службы.

б) Система ПЧ-АД позволяет регулировать скорость вращения во всем диапазоне без потери перегрузочной способности, чего не позволяет система ТРН-АД.

в) Система ПЧ-АД позволяет плавно регулировать скорость вращения во всем диапазоне, чего не позволяет осуществлять реостатное регулирование и регулирование переключением пар полюсов.

г) Система ПЧ-АД позволяет регулировать количество потребляемой мощности, что делает систему ПЧ-АД самой экономичной из перечисленных. Это свойство особенно важно в данной системе, т.к. электропривод работает на скоростях ниже номинальной продолжительное поддержания электродвигателя в режиме оптимального КПД. В данном случае такая экономия может оказаться существенной, т.к. статический момент равен приблизительно половине номинального момента на двигателе.

Выберем из [11] асинхронный двигатель для проектируемого электропривода. Мощность электродвигателя была рассчитана ранее. Выбираем АИР80В4 со следующими техническими данными (табл. 2.4):

 Таблица 2.4

Рн, кВт

Sн, %

ηн

сosφн

λm

λI

R1, Ом

J, кг·м2

1.5 0.07 0.77 0.83 2.2 6.5 5.46

3.3*10-3

По справочным данным рассчитаем основные номинальные параметры электродвигателя.

Ток статора:

 А.

Угловая скорость вращения:

ωн=ωон*(1-Sн)=157.2*(1-0.07)=146.6 с-1,

где: ωон – номинальная скорость вращения магнитного поля.

Номинальный механический момент:

.

Номинальный электромагнитный момент:

Мэмн=1.012*Ммехн=1.012*10.2=10.6 Н·м,

где: 1.012 – коэффициент, учитывающий добавочные потери и потери на трение в механической части электродвигателя.

2.5.2 Выбор комплексного преобразователя

Для проектируемого электропривода выбираем преобразователь частоты фирмы «Danfoss» серии VLT 5000. Фирма «Danfoss» выпустила первый в мире серийный преобразователь частоты в 1968 г. С тех пор фирма установила стандарт качества для электроприводов [12]. Ее частотные преобразователи VLT сегодня проданы и обслуживаются более чем в 100 странах на шести континентах. В новой серии преобразователей VLT 5000 заложена система управления VVCPLUS – это новая система векторного управления без датчиков управляющегося момента. По сравнению со стандартным управлением коэффициентом напряжение/частота система VVCPLUS обеспечивает улучшенную динамику и устойчивость как при изменении задания скорости, так и при изменении момента нагрузки. В системе управления ПЧ внедрена система цифровая защита, которая гарантирует надежную работу даже при самых неблагоприятных эксплуатационных условиях. Электроприводы фирмы «Danfoss» с системой управления VVCPLUS допускают ударные нагрузки во всем диапазоне скоростей и быстро реагируют на изменение задания. Чтобы сделать программирование простым и понятным, параметры разделены на различные группы. Быстрое меню проводит пользователя через программирование нескольких параметров, которые должны быть установлены, чтобы начать работу. Пульт управления съемный. Он включает алфавитно-цифровой дисплей из четырех строк, давая возможность отображать четыре параметра одновременно. Через съемный пульт управления запрограммированные значения могут быть скопированы с одного VLT на другой. Это уменьшает затраты времени на программирование при замене приводов или включении дополнительного привода в систему. Процесс программирования оказывается легче, чем в других сериях. Преобразователи VLT 5000 выполняют большинство настроек автоматически. ПЧ серии VLT 5000 построены на базе инверторов с промежуточным звеном постоянного тока и широтно-импульсной модуляцией. В качестве силовых ключей используются биполярные транзисторы с изолированным управляющим электродом (IGBT). Функциональная схема преобразователя частоты серии VLT 5000 представлена на рис. 2.10.

L, C1…C3 – входной LC фильтр, поставляемый по специальному заказу, служит для сглаживания импульсов входного тока, а так же блокирует высокочастотные помехи из сети в ПЧ и наоборот.

VD1…VD6 – неуправляемый выпрямитель для преобразования энергии переменного тока в энергию постоянного тока.

Rз – зарядный резистор для предварительного заряда конденсаторов силового фильтра С4…С6.

С4…С6 – силовые конденсаторы для фильтрации выпрямленного напряжения в звене постоянного тока.

Rs – резисторный датчик обратной связи по току инвертора для контроля тока инвертора, защиты инвертора от токов короткого замыкания.

VT1…VT6 – транзисторы силового тока инвертора, могут быть скомпонованы в виде полумостов.

М – асинхронный исполнительный двигатель.

ИБП – импульсный блок питания, обеспечивает несколько стабилизированных напряжений.

К – реле предварительного заряда. Включается после предварительного заряда силовых конденсаторов, шунтируя своим контактом резистор Rз.

БВВУ – блок верхних выходных усилителей.

БНВУ – блок нижних выходных усилителей.

БВВУ и БНВУ служат для формирования импульсов управления силовыми ключами.

БУИ – блок управления инвертором. Главный управляющий узел, который формирует на выходе 6 импульсных сигналов формирования ШИМ по различным алгоритмам. В соответствии с сигналами ОС, сигналами управления и выбранными комплексами программ БУИ выполняется на базе микропроцессорных контроллеров.

БИФ – блок интерфейса, обеспечивает связь схемы управления преобразователем с внешним устройством ЦПУ и АЛУ, персональным компьютером (РС), ведущим приводом MD, а также выдает сигнал для ведомого привода, если данный ЭП является ведущий.

БРИТ – блок реостатно-инверторного торможения.

RT – силовой тормозной резистор.

БРИТ и RТ поставляются по желанию заказчика.

Общие технические данные преобразователй частоты серии VLT 5000 [13] приведены в таблице 2.5:

Таблица 2.5

Частота питания, Гц 50/60
Максимальный дисбаланс напряжения питания

±2%Uн

Коэффициент мощности 0.9…1.0
Пусковой вращающий момент в течении 1 мин., % 160
Пусковой вращающий момент в течении 0.5 сек., % 180
Диапазон частот, Гц 0…1000
Разрешение на выходной частоте, Гц ±0.003

Диапазон регулирования скорости:

 Разомкнутая система

 замкнутая система

1…100

1…1000

Число программируемых (по напряжению) аналоговых входов 2
Число программируемых цифровых и аналоговых выходов 2
Число программируемых цифровых входов 8

Частотный преобразователь выбирается по току. Номинальный ток IVLT.N должен бать равен или больше требуемого тока двигателя (Iн = 3.56 А). Выбираем из [12] преобразователь частоты типа VLT 5003. Технические данные ПЧ VLT 5003 приведены в таблице 2.6.

Таблица 2.6.

Выходной ток:

 IVLT.N, A

 IVLT.MAX (60 c), A

4.1

6.5

Выходная мощность,

 SVLT.N, кВт∙А

 РVLT.N, кВт

3.1

1.5

Выходное напряжение, В 0…220
Выходная частота, Гц 0…1000
Время разгона, с 0.05…3600

3. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ РАЦИОНАЛЬНОЙ СИСТЕМЫ ЭЛЕКТРОПРИВОДА

Решение о выборе лучшего варианта привода принимается на основе сопоставления приведенных затрат на одинаковый объем выпускаемой продукции.

В данном проекте необходимо обеспечить регулирование продолжительности времени выпечки с коррекцией по температуре во второй зоне пекарной камеры. При этом необходимо учитывать, что производительность печи при замене системы привода меняться не должна, а также желательно сохранить неизменной конфигурацию оборудования и занимаемую им площадь.

Ниже рассмотрены некоторые системы привода конвейера печи.

Регулирование продолжительности времени выпечки может осуществляться механически при помощи блок-вариатора (существующий вариант). Тогда для реализации коррекции продолжительности выпечки на маховик вариатора необходимо установить регулирующий механизм (например, сервопривод ), который поворачивал бы маховик в ту или иную сторону, в зависимости от температуры. Такой вариант регулирования очень прост и требует минимальных капитальных затрат. Однако при частых поворотах ручки маховика будет сильно увеличиваться износ блок-вариатора, что в конечном итоге приведет к быстрому выходу вариатора из строя. Очевидно, что данный вариант регулирования нас не устраивает.

Лучшими показателями по сравнению с рассмотренным способом регулирования обладает электрическое регулирование продолжительности выпечки, т.е. изменением скорости вращения приводного двигателя конвейера.

В настоящее время наибольшее распространение получили системы электропривода ТП – ДПТ НВ (тиристорный преобразователь – двигатель постоянного тока независимого возбуждения) и ПЧ – АД (преобразователь частоты – асинхронный двигатель). Ниже приведена таблица [14], в которой методом экспертных оценок баллами определены рассматриваемые системы по ряду показателей:

Таблица 3.1.

Система электропривода

Р, кВт

D

M

Кап. затраты

Масса

η, ΔР

Qн, cosφн

Ук

Укэ

~

~ω2

двиг. преобраз.
ТП – ДТП НВ от 10 до 10000

1:104

+ + 3.5 2 2 2 3 2 3
ПЧ –АД до 10000

1:104

3.0 1.5 2 1.5 2 2 2.5

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.