рефераты бесплатно

МЕНЮ


Учебное пособие: Производственная безопасность

Количество возможных путей тока через тело человека, называемых петлями тока, достаточно много. Чаще всего встречаются ток протекает по петлям: рука-рука; рука-ноги; нога-нога; голова-руки; голова-ноги. Наиболее опасными являются петли: голова-руки и голова-ноги, но они возникают относительно редко.

Условия внешней среды и факторы трудового процесса оказывают существенное влияние на величину сопротивления кожного покрова и в целом тела человека. Так, например, повышенная температура (~ 30 °С и выше) и относительная влажность воздуха (~ 70 % и выше) способствуют повышенному потоотделению, а, следовательно, резкому уменьшению активного сопротивления тела человека. Интенсивная физическая работа приводит к аналогичному результату.

13.2 Анализ условий поражения человека электрическим током в трехфазных сетях переменного тока

Поражение человека электрическим током возможно лишь при замыкании электрической цепи через его тело, т.е. при прикосновении не менее чем к двум точкам электрической цепи, между которыми существует разность потенциалов (напряжение).

Напряжение между двумя точками цепи тока, к которым одновременно прикасается человек, называется напряжением прикосновения.

Опасность такого прикосновения определяется силой тока, проходящего через тело человека, которая зависит от следующих факторов:

-  схемы замыкания цепи тока через тело человека;

-  напряжения электрической сети;

-  схемы сети, режима работы её нейтрали (заземлена или изолирована);

-  сопротивления изоляции токоведущих частей относительно земли;

-  величины ёмкости токоведущих частей относительно земли.

13.2.1 Характеристика основных систем «электроустановка – трёхфазная электрическая сеть переменного тока», использующихся в производственных условиях

Электроустановка – совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования её в другие виды энергии.

Наибольшее распространение на производстве получили системы, в которых в качестве источника энергопитания используются трёхфазные электрические сети переменного тока (далее электросети) с изолированной и заземлённой нейтралью. В соответствии с требованиями, изложенными в «Правилах устройства электроустановок» (ПУЭ), для таких систем напряжением до 1 кВ приняты следующие обозначения:

система IT – система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены (рис. 2а);

система TN – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников (рис. 2б,в,г);

система TN-С – система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 2б);

система TN-S – система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 2в);

система TN-C-S – система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания (рис. 2г);

система ТТ – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземлённой нейтрали источника (рис. 2д).

Первая буква условного обозначения системы характеризует состояние нейтрали источника питания относительно земли:

Т – заземленная нейтраль;

I – изолированная нейтраль.

Вторая буква условного обозначения системы характеризует состояние открытых проводящих частей относительно земли:

–  Т – открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

–  N – открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (только после N) буквы характеризуют совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

–  S – нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;

–  С – функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник).

Условные обозначения на схемах (рис. 2):

–  N -  – нулевой рабочий (нейтральный) проводник;

–  РЕ - – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

–  PEN -  – совмещенный нулевой защитный и нулевой рабочий проводники.

Глухозаземлённая нейтраль источника энергопитания – нейтраль трансформатора или генератора, присоединённая непосредственно к заземляющему устройству.

Изолированная нейтраль источника энергопитания – нейтраль трансформатора или генератора, неприсоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

 

а) б)

 

в) г)

 

д)

Рис. 2. Трёхфазные электрические системы переменного тока с изолированной и заземлённой нейтралью энергоисточника напряжением до 1 кВ

а) – система IT; б) – система TN-С; в) – система TN-S; г) – система TN- С- S; д) – варианты системы TT.

1 – заземлитель нейтрали энергоисточника; 1а – сопротивление заземления нейтрали источника питания (если имеется, например, через приборы или устройства, имеющие большое сопротивление); 2 – открытые проводящие части электроустановки; 3 – заземлитель открытых проводящих частей электроустановки

13.2.2 Основные схемы включения человека в электрическую цепь

Трёхфазная трёхпроводная электрическая сеть переменного тока с изолированной нейтралью (в системе IT).

Двухфазное прикосновение к токоведущим частям (рис. 3).

Рис. 3. Двухфазное (двухполюсное) прикосновение к токоведущим частям в системе IT

Uф – фазное напряжение; Ih – сила тока, протекающего через человека;

Rh – сопротивление человека; L1, L2, L3 – фазные проводники.

Сила тока (Ih, А), протекающего через человека, определяется по формуле

, (16)

где Uл – линейное напряжение, В;

Uф – фазное напряжение, В;

Rh – сопротивление человека, Ом.

Например, в электросети с линейным напряжением 380 В (Uф = 220 В) при сопротивлении тела человека 1000 Ом сила тока, протекающего через человека, составляет:

.

Эта сила тока смертельно опасна для человека.

При двухфазном прикосновении ток, проходящий через человека, практически не зависит от режима работы нейтрали. Опасность прикосновения не уменьшится и в том случае, если человек будет надёжно изолирован от земли.

Однофазное прикосновение (рис.4.) происходит во много раз чаще, чем двухфазное, но оно менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного, т.е. меньше линейного в 1,73 раза и, кроме того, ток, протекающий через человека, возвращается к источнику (электросети) через изоляцию проводов, которая в исправном состоянии обладает большим сопротивлением.

Рис.4. Однофазное (однополюсное) прикосновение к токоведущим частям в системе IT

r1, r2, r3 – сопротивление изоляции проводов электросети; с1, с2, с3 – ёмкость проводов электросети

Сила тока (Ih, А), протекающего через человека, для этого случая определяется по формуле

 (17)

где Rп – переходное сопротивление, Ом (сопротивление пола, на котором стоит человек и обуви); Z – сопротивление изоляции фазного провода относительно земли, Ом (активная и емкостная составляющие).

В наиболее неблагоприятной ситуации, когда человек имеет токопроводящую обувь и стоит на токопроводящем полу (Rп ~ 0), сила тока, протекающего через тело, определяется по формуле

если Uф = 220 В, Rh = 1 кОм, Z = 90 кОм, то Ih = 220/(1000 + (90000 / 3)) = 0,007 А (7 мА).

Трёхфазная четырёхпроводная электрическая сеть переменного тока с заземлённойнной нейтралью (в системе TN).

Однофазное прикосновение к токоведущим частям.

Рис.5. Однофазное (однополюсное) прикосновение к токоведущим частям в системе TN


R0 – сопротивление заземления нейтрали электросети

В четырёхпроводной электрической сети переменного тока с глухозаземлённой нейтралью (система TN) ток, проходящий через человека, возвращается к источнику (электросети) не через изоляцию проводов, как в предыдущем случае, а через сопротивление заземления нейтрали (R0) источника тока (рис. 5). Сила тока, проходящего через тело человека, определяется при этом по формуле:

 (19)

где R0 – сопротивление заземления нейтрали источника тока, Ом.

Сопротивление заземляющего устройства, к которому присоединена нейтраль источника тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В. Это сопротивление должно быть обеспечено с учётом использования естественных заземлителей, а также заземлителей повторных заземлений PEN- или PE-проводника воздушных линий электропередач (ВЛ) напряжением до 1 кВ. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали источника тока, должно быть не более 15, 30 и 60 Ом соответственно при тех же линейных напряжениях 660, 380 и 220 В.

Пример. В наиболее неблагоприятной ситуации, рассмотренной выше, при Uф = 220 В, Rh = 1000 Ом, Rп ~ 0 Ом R0 = 30 Ом сила тока, протекающего через тело человека, составит:

Ih = 220/1000 + 30 = 0,214 А (214 мА), что смертельно опасно для человека.

Если обувь не токопроводящая (например, резиновые галоши с сопротивлением 45 кОм) и человек стоит на не токопроводящем полу (например, деревянный пол с сопротивлением 100 кОм), т.е. Rп = 145 кОм, то сила тока, протекающего через тело человека, составит:

Ih = 220/1000 + 60 + 145000 = 0,0015 А (1,5 мА), что опасности для человека не представляет.

Таким образом, при прочих равных условиях прикосновение человека к одному фазному проводу электросети сети с изолированной нейтралью менее опасно, чем в электросети с заземлённой нейтралью.

Рассмотренные выше схемы включения человека в электрическую цепь трёхфазного переменного тока справедливы для нормальных (безаварийных) условий работы электрических сетей.

В аварийном режиме работы трёхфазной электрической сети переменного тока один из фазных проводов, например, электросети с заземлённой нейтралью (в системе TN) может быть замкнут на землю (при срабатывании системы защитного заземления, падении фазного провода на землю и т.п.) через сопротивление Rзм (рис. 6).

Рис. 6. Однофазное (однополюсное) прикосновение к токоведущим частям в аварийном режиме работы электросети.

Rзм – сопротивление замыкания фазного провода (L2) на землю

Сила тока, проходящего через тело человека, касающегося в этой ситуации одного из исправных фазных проводов (L1, L3), определяется из уравнения

, (20)

где Rзм – сопротивление замыкания фазного провода на землю, Ом.

Если при этом Rзм ~ 0 или намного меньше и R0, и Rh, то им можно пренебречь, тогда сила тока, проходящего через тело человека, будет определяться по формуле

, (21)

т. е. человек будет включаться в электрическую цепь двухфазно, причём вторая фаза подключается к нему через ноги и на величину Ih будет оказывать существенное влияние переходное сопротивление Rп.

При напряжениях до 1000 В в производственных условиях широкое распространение получили обе рассмотренные выше схемы трехфазных электрических сетей переменного тока: трёхпроводная с изолированной нейтралью (система IT) и четырёхпроводная с заземлённой нейтралью (система TN).

Электрическую сеть с изолированной нейтралью целесообразно применять в тех случаях, когда имеется возможность поддерживать высокий уровень сопротивления изоляции фазных проводов и незначительную ёмкость последних относительно земли. Такими являются электрические сети малоразветвлённые, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала. Так, например, в угольных шахтах используются только электросети с изолированной нейтралью.

Электрическую сеть с заземлённой нейтралью следует применять там, где невозможно обеспечить хорошую изоляцию проводов (например, из-за высокой влажности или агрессивной среды), когда нельзя быстро отыскать или устранить повреждение изоляции, либо когда ёмкостные токи электросети вследствие значительной её разветвлённости достигают больших значений, опасных для человека.

При напряжении выше 1000 В по технологическим причинам электрические сети напряжением до 35 кВ включительно имеют изолированную нейтраль, свыше 35 кВ – заземлённую. Поскольку такие электросети имеют большую ёмкость проводов относительно земли, для человека одинаково опасным является прикосновение к их фазным проводам независимо от режима работы нейтрали энергоисточника. Поэтому режим работы нейтрали электросети напряжением выше 1000 В по условиям безопасности не выбирается.

13.3 Явления при стекании электрического тока в землю. Напряжение шага

Стекание электрического тока в землю происходит только через проводник, находящийся в непосредственном контакте с землёй. Такой контакт может быть случайным или преднамеренным. В последнем случае проводник, находящийся в контакте с землей, называется заземлителем или электродом.

Для упрощения дальнейших рассуждений считаем, что земля во всём своём объёме однородна, т.е. в любой точке обладает одинаковым удельным электрическим сопротивлением (ρ, Ом · м). В этом случае ток будет растекаться во все стороны одинаково по радиусам полушария (рис. 7).


Рис. 7. Схема образования напряжения шага

а) – общая схема; б) – растекание тока с опорной поверхности ног человека.

А, Б – опорные точки ног человека; З – точка замыкания на землю; Uз – напряжение замыкания;

Uш – напряжение шага; а – ширина шага; φ – электрический потенциал; x – радиальное расстояние от точки замыкания на землю

В объёме земли, где проходит ток, возникает так называемое «поле растекания тока», имеющее полусферическую конфигурацию. Теоретически оно простирается до бесконечности. Однако в реальных условиях уже на расстоянии 20-ти м от точки замыкания сечение слоя земли, по которому проходит ток, оказывается настолько большим, что плотность тока здесь практически равна нулю. На поверхности земли при этом возникает неравномерное электрическое (для постоянного тока) или электромагнитное (для переменного тока) круговое поле с максимумом потенциала (φ, В) в точке замыкания на землю.

Если в этой ситуации человек будет радиально шагать к точке замыкания на землю по её поверхности, то его ноги при каждом шаге будут оказываться под всё бóльшей разностью потенциалов (см. рис. 7а).

Напряжением шага называется напряжение между двумя точками на поверхности земли, расположенными на расстоянии 1 м одна от другой (принимается равным длине шага человека), обусловленное растеканием тока замыкания на землю.

Основной путь тока при этом пролегает через ноги и тазобедренную часть тела, где расположены гонады – одна из важнейших составляющих половой системы человека. Указанное обстоятельство, кроме рассмотренных выше негативных факторов воздействия на человека электрического тока, нарушает нормальное состояние репродуктивной функции организма. Действие электрического тока в этой ситуации может усугубиться тем, что из-за судорожных сокращений мышц ног, возможно падение человека, после чего цепь тока замыкается на его теле через другие жизненно важные органы (мозг, сердце, лёгкие и др.). Кроме того, рост человека, который больше ширины шага, обусловливает бóльшую разность потенциалов (напряжение, приложенное к телу).

13.4 Классификация помещений по опасности поражения электрическим током

Состояние окружающей среды, а также окружающая обстановка могут усиливать или ослаблять опасность поражения электрическим током. Так, сырость, токопроводящая пыль, едкие пары и газы разрушающе действуют на изоляцию электроустановок, резко снижая её сопротивление и создавая угрозу перехода напряжения на корпуса, станины, кожухи и другие нетоковедущие проводящие части электрооборудования, к которым может прикасаться человек.

Вместе с тем, в этих же условиях, как и при высокой температуре окружающего воздуха, понижается сопротивление тела человека, что ещё больше увеличивает опасность поражение его электрическим током.

По действующим «Правилам устройства электроустановок» (ПУЭ) все помещения делятся по степени опасности поражения людей электрическим током на три класса: без повышенной опасности; повышенной опасности; особо опасные.

К помещениям без повышенной опасности относятся сухие, беспыльные помещения с нормальной температурой воздуха, с изолирующими (например, с сухими деревянными) полами, в которых отсутствуют заземлённые предметы или их очень мало.

На производстве к таким помещениям могут относиться лишь только некоторые вспомогательные помещения (помещения культурного обслуживания, управления и общественных организаций и др.).

К помещениям повышенной опасности относятся:

–  сырые, в которых относительная влажность воздуха превышает 75 %;

–  жаркие, в которых под воздействием тепловых излучений температура воздуха превышает постоянно или периодически (более 1 сут.) 35°С;

–  пыльные, с токопроводящей пылью, в которых по условиям производства выделяется токопроводящая технологическая пыль в таком количестве, что она может оседать на провода, проникать внутрь машин, аппаратов;

–  с токопроводящими полами (металлическими, земляными, железобетонными, кирпичными и др.);

–  в которых возможно одновременное прикосновение человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам с одной стороны и к металлическим корпусам электрооборудования – с другой.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.