рефераты бесплатно

МЕНЮ


Реферат: Производство металлов и их сплавов

Для механизации отдельных трудоемких подготовительных и вспомогательных этапов флотационного обогащения используют различные машины, облегчающие эти операции, например для измельчения руды (дробилки и мельницы), для разделения ее на мелкие и крупные фракции (грохоты и классификаторы), аппараты для разделения пульпы на жидкость и твердые частицы (сгустители и фильтры), собственно флотационные машины и многие другие. Кратко рассмотрим лишь один из типов машин:в машины через боковую трубу непрерывно подается пульпа, состоящая из воды, мелких частиц руды и уже внесенных в пульпу необходимых флотационных реагентов. Сверху по трубе засасывается воздух, вгоняемый в машину быстро вращающимся импеллером (300— 600 об/мин). Циркулирующая в машине пульпа в смеси с пузырьками воздуха в верхней правой части машины собирает пену, которую непрерывно удаляют из машины медленно поворачивающимся пеносмесителем. Оставшаяся пульпа сливается через порог в боковой стенке машины (на схеме в задней стенке) и попадает в ее соседнюю секцию, так как флотационная машина состоит из 4—20 камер (секций).

Полученный после флотационного обогащения медный порошкообразный концентрат, содержащий 11—35% меди, 15—35% серы, 15—37% железа, а также немного кремнезема, окиси алюминия, окиси кальция, небольшие примеси цинка, никеля и некоторых других соединений, направляют на дальнейшую переработку.

Получение медных штейнов

Важнейшей операцией переработки медной руды является плавка на штейн. Штейном называют сплав сульфидов, образующийся при плавке медной руды, главным образом меди и железа (обычно 80—90%), остальное составляют сульфиды цинка, свинца, никеля, а также окислы железа, кремния, алюминия и кальция, концентрирующиеся главным образом в шлаке, но частично растворяющиеся и в штейне. Жидкие штейны хорошо растворяют в себе золото и серебро, и, если эти ценные металлы есть в руде, они почти полностью концентрируются в штейне.

Целью плавки на штейн является отделение сернистых соединений меди и железа от содержащихся в руде примесей, присутствующих в ней в виде окисленных соединений. Получаемый штейн не должен содержать слишком мало меди, так как это делает .непроизводительными последующие переделы, но и очень богатые медью штейны получать нельзя, так как при этом значительное количество меди теряется в шлаках.

В зависимости от химического состава руды и ее физического состояния штейн получают либо в шахтных печах, если сырьем служит кусковая медная руда, содержащая много серы, либо в отражательных или дугосых электрических печах, если исходным продуктом являются порошкообразные флотационные концентраты.·

Отражательная печь строят длиной 35—40, шириной 7—10 и высотой 3,5—4,5 м. Стены и свод делают из динасового или магнезитового кирпича. Огнеупор выбирают в зависимости от преобладания в шихте основных или кислотных окислов, так как соответствие состава шихты и огнеупорных материалов удлиняет срок их службы. Под печи делают в несколько слоев, а лещадь покрывают кварцевым песком, который перед пуском печи оплавляют, превращая в плотную массу.

Отражательные печи отапливают мазутом, угольной пылью или газом, вдувая топливо форсунками (4—10 шт.) через окна, имеющиеся в торце печи. Максимальная температура в головной части печи 1550° С и, постепенно снижаясь, к хвостовой части обычно бывает 1250—1300° С. Шихту в эти печи загружают через отверстия в своде, расположенные вдоль печи у боковых стенок. При загрузке шихта ложится откосами вдоль стен, предохраняя кладку от прямого воздействия шлаков и газов. По мере нагревания шихты начинаются реакции частичного восстановления высших окислов железа и меди, окисления серы и шлакообразования.

Плавка медных концентратов в электрических печах из-за дефицита электроэнергии и возможности использования в этой операции низкосортных сернистых топлив пока не нашла широкого применения. Но для плавки кусковой медной руды еще широко применяют шахтные ватержакетные печи (рис. 143). Нередки случаи, когда даже богатые серой концентраты предварительно агломерируют, чтобы подвергнуть их плавке в шахтных печах. Печь эта имеет в плане прямоугольное сечение шириной около 1м и несколько метров в длину.

Основные рабочие стенки печи выполняют из полых стальных коробок, охлаждаемых изнутри водой, называемых кессонами, так как известные технические огнеупоры оказываются в этих условиях недостаточно стойкими. Во время плавки на холодные стенки настывает оплавленная шихта, предохраняющая кессон от разрушения. Шихту загружают с площадки, расположенной на уровне верхнего края кессона, подача воздуха для горения проводится через фурмы, расположенные вдоль продольных стенок в нижней части кессонов.

Выпуск штейна и шлака из печи производится совместно и непрерывно через спускной желоб, имеющий гидравлический затвор. Жидкая вязкая смесь стекает в большой овальный отстойник, называемый передним горном, футерованный хромомагнезитовым кирпичом. В нем происходит медленное расслоение штейна и шлака. Избыточный шлак сливается по желобу в противоположном конце переднего горна, а штейн по мере необходимости выпускают через летки, расположенные у лещади горна. Над печью делают футерованный огнеупорными материалами так называемый шатер для сбора и отвода отходящих газов и направления их на пылеулавливание и газоочистку.

Переработка медного штейна

Наиболее распространены теперь цилиндрические бочкообразные конверторы, один из вариантов которых изображен на рис. 144, <2, б. Наружный диаметр конвертора обычно 2,3—4 м, длина 4,3—10 м. Наиболее крупные конверторы выдают за один цикл процесса до 100 т меди. Воздух в конвертор подается через ряд фурм, расположенных по образующей цилиндра. Цилиндр опирается двумя прочными бандажами на четыре пары роликов (рис. 144, б). Поворот конвертора на роликах на необходимый угол для заливки штейна в горловину и выливки продуктов плавки проводится зубчатой передачей и зубчатым ободом, закрепленнымина стальном кожухе. Внутри конвертор футеруется магнезитовым и хромомагнезитовым кирпичом.

Переработка штейна в конверторе протекает в два периода. В конвертор загружают кусковой кварц, заливают расплавленный штейн и продувают его воздухом,).

Образующийся шлак периодически сливают и в конвертор добавляют свежие порции медного штейна и кускового кварца. Температура заливаемого штейна обычно около 1200°С, но за время продувки, за счет большего выделения тепла при окислении сульфидов температура повышается до 1350°С. Продолжительность первого периода зависит от количества меди в штейне и составляет 6—20 ч.

Введение в воздушное дутье добавки кислорода повышает температуру в конверторе и позволяет загружать в него холодный концентрат, заменив им некоторую часть расплавленного штейна.

Первый период заканчивается, когда в продуваемом штейне окислено сернистое железо. После этого тщательно удаляют шлак и продолжают продувку без добавки штейна и кварца. Второй период начинается, когда в конверторе остается только Cu2S, называемый белым штейном, а на некоторых заводах «белым маттом».

Второй период заканчивается, когда в конверторе весь белый штейн превращается в медь, на что обычно уходит 2—3 ч. В конверторе и во втором периоде образуется небольшое количество богатого медью шлака, который остается в нем после выливки черновой меди и перерабатывается в следующем цикле. Конверторные шлаки первого периода направляют для переработки в отражательные печи.

Черновую медь по окончании процесса наклоном конвертора выливают в ковш и разливают в изложницы. Полученную в конверторе медь называют черновой, т. е. еще не готовой медью, так как в ней содержится 1,0—2,0% железа, цинка, никеля, мышьяка, сурьмы, кислорода, серы и других примесей и растворены благородные металлы, ранее находившиеся в штейне.

Рафинирование меди

Черновая медь всегда подвергается рафинированию для удаления из нее примесей, ухудшающих ее свойства, а также извлечения из нее таких ценных металлов, как золото, серебро и др. В практике рафинирование проводят последовательно, двумя принципиально различными методами: пилометаллургическим и электролитическим.

Огневое пирометаллургическое рафинирование меди проводят в отражательных печах, эскиз которой .представлен на рис. 145.

Весь цикл огневого рафинирования состоит из следующих операций: загрузки и расплавления, окисления примесей, удаления растворенных газов, раскисления меди и разливки; он занимает обычно 12—16 ч..

Удаление растворенных газов из меди принято называть «дразнением на плотность». В металл ванны погружают .сырые деревянные жерди, древесина которых выделяет газообразные углеводороды, бурно перемешивающие медь и удаляющие наметал л а сернистый и другие газы. После удаления газов, для получения пластичной меди начинают раскисления или, как принято говорить на заводах, «дразнением на. ковкость».

Электролитическое рафинирование меди проводят в ваннах, наполненных раствором сернокислой меди, подкисленным серной кислотой.

Для получения бескислородной меди (марка МОб) и марок меди с пониженным содержанием кислорода (М1р, М2р и др.) переплавку катодов ведут в канальных индукционных электропечах со стальным сердечником, а разливку — непрерывно в защитной среде. Для меди марок с буквой ρ применяют раскисление фосфористой медью.

Медные сплавы

В технической меди могут присутствовать примеси Bi, Sb, As, Pb, Sn, Fe, Ni, S, О, сопутствующие при получении ее из руд и при рафинировании или попавшие в нее при переработке отходов. Суммарно допустимое количество этих примесей приведено в табл. 17. Более 50% чистой меди потребляет электротехническая промышленность и энергетика в качестве проводников электрического тока. Поэтому большое количество меди подвергается прокатке и волочению.

Медь обладает хорошей пластичностью как в холодном, так и в горячем состоянии. Но не все перечисленные примеси одинаково влияют на пластичность и другие свойства меди. Наиболее осложняют горячую прокатку меди висмут и свинец, не растворяющиеся в меди в твердом состоянии, образующие с ней легкоплавкие эвтектики (висмут с температурой плавления 270°С, а свинец с температурой плавления 326°С). Поэтому их содержание в высших сортах меди лимитируется тысячными долями процента.

Отрицательно влияет на горячую прокатку и кислород, но при больших концентрациях (0,1—0,2%). Другие примеси (олово, цинк, никель, серебро) не ухудшают пластичности меди и других механических свойств, так как, присутствуя в небольших количествах, они входят в твердый раствор.

Наиболее распространенными и известными сплавами меди являются латуни и бронзы.

Латунями называют группу сплавов меди с цинком, получившую наиболее широкое применение в технике. В группу латуней входят томпак (90% и более меди, остальное цинк, если эти сплавы содержат от 79 до 86% меди, их называют полутомпак) и много других, не только двойных, но и более сложных сплавов.

Механическая прочность латуней выше, чем меди, и они хорошо обрабатываются резанием. Большим их преимуществом является их пониженная стоимость, так как входящий в них цинк значительно дешевле меди. Латуни широко применяют в приборостроении, в общем и химическом машиностроении.

АЛЮМИНИЙ И ЕГО СПЛАВЫ

Алюминий — второй (после железа) металл современной техники. Его мировое производство в ближайшие годы достигнет 15 млн. т. в год.

Наиболее важным свойством алюминия, определяющим его широкое применение в технике, является его небольшая плотность, равная 2,7 г/см3, т. е. алюминий почти в три раза легче железа.

Вторым очень важным свойством алюминия является его относительно высокая электропроводность, которая равна 34´104 Ом-1´см-1, что составляет 57% электропроводности меди. Температура плавления алюминия 660° С, температура кипения около 2500° С.

Кроме того, из свойств алюминия следует отметить его хорошую теплопроводность и теплоемкость. Алюминий химически стоек против органических кислот и хорошо сопротивляется воздействию азотной кислоты. Он очень быстро окисляется на воздухе, покрываясь тонкой пленкой окиси, которая, в отличие от окиси железа, не пропускает кислород в толщу металла. Следовательно, алюминий, несмотря на быстрое окисление при нормальных условиях коррозионностоек. Его кристаллическая решетка. Механические свойства алюминия сравнительно невысоки. Сопротивление на разрыв находится в пределах от 90 до 180 МПа (от 9 до 18 кгс/мм2) НВ20—40; он имеет высокую пластичность, что дает возможность прокатывать его в очень тонкие листы. Необходимо отметить, однако, трудность обработки чистого алюминия резанием, а также относительно высокую линейную усадку — 1,8%.

Вторая область его применения — электротехника. Это обусловлено тем, что алюминий менее дефицитен и встречается в природе более широко, чем медь; электропроводность алюминия меньше меди, хотя провод из алюминия такой же электропроводности, как аналогичный медный провод, получается толще, но зато легче. Это важно для проводки во всех летательных и транспортных аппаратах, а также для проводов воздушных линий электропередач, где, применяя алюминиевые провода, можно реже ставить опоры.

Алюминий широко применяется в металлургии, где используется его большое сродство к кислороду для получения в чистом виде дорогих и редких металлов (например, хрома, ванадия и др.), низкие сорта алюминия используются для раскисления стали.

Руды алюминия

Алюминий — наиболее распространенный металл в земной коре (8,8%); в чистом виде он не встречается, зато минералов, содержащих алюминий, очень много.Основным сырьем для получения алюминия служат бокситы.

Бокситы представляют собой сложную горную породу, которая содержит алюминий в виде гидроокисей. Вторая руда, которая используется для производства алюминия в нашей стране, — нефелин. Химическая формула этого минерала

Na(K)2OAl2O3-2Si02

Нефелины сопутствуют горной породе, которая называется апатит. Апатитонефелиновых пород очень много на Кольском полуострове. Они давно разрабатываются для получения фосфорных удобрений и их отходом являются нефелины.

Производство глинозема.

Электротермические способы. Суть этих способов заключается в восстановлении алюминиевой руды в электропечи; примеси, имеющиеся в руде, восстанавливают до элементарного состояния и, переводя их в металл (кремнистый чугун), оставляют в шлаке невосстановленной только окись алюминия, но в шлаке остаются некоторые частично невосстановленные примеси. Эти способы применяются для получения глинозема, идущего на изготовление шлифовальных кругов и других абразивных изделий, но для производства высококачественного алюминия такой глинозем не пригоден.

Кислотные способы. Сущность этих способов сводится к тому, что алюминиевая руда подвергается обработке какой-либо минеральной кислотой, например соляной или серной. В процессе такой обработки кислота взаимодействует с окисью алюминия и получается соответствующая растворимая соль (например, хлористый алюминий).

Щелочные способы. Эти способы в большинстве стран применяют и для получения чистой окиси алюминия. Суть щелочных способов заключается в том, что алюминиевая руда подвергается воздействию какой-либо щелочи (едким натром, кальцинированной содой и др.).

5. Рафинирование алюминия

Рафинирование алюминия осуществляется в расплавленной среде. Анодом является сплав загрязненного алюминия с тяжелым металлом, к которому через подовые угольные блоки 1 подводится ток большой силы (рис. 160), катодом — чистый рафинированный металл, отрицательный полюс к которому подводится с помощью подвесных графитовых катодов 5.

В качестве электролита обычно применяют смесь ВаС12 (60%), A1F3 (23%) и NaF (17%), имеющую плотность в условиях процесса 2,7 (плотность чистого алюминия в этих условмях 2,3). В качестве утяжелителя для анодного сплава наиболее удобно применять медь, которую обычно вводят в количестве 25%, что вполне предохраняет анодный сплав от всплывания со дна электролизера (плотность 3,0—3,5).

Сущность процесса электролитического рафинирования по трехслойному методу сводится к следующему. Если на дно электролитической ванны (рис. 160) поместить расплавленный анодный сплав из алюминия-сырца и меди, а над ним электролит указанного выше состава и через них пропускать постоянный электрический TOKJ то через некоторое время на катоде начнется выделение чистого алюминия. По мере хода процесса содержание алюминия в анодном сплаве постепенно уменьшается, а количество чистого алюминия на катоде увеличивается.

Высота слоя анодного сплава в ванне 200—250 мм, электролита — 120—150 мм. Рекомендуется всегда иметь на катоде слой металла толщиной около 100 мм. Во избежание окисления катодного металла его засыпают сверху тонким слоем порошкообразного электролита. Процесс ведут при температуре 760—800° С. Напряжение на ванне выдерживают в пределах 6—7 В. При этом может быть получен алюминий чистотой до 99,99%.\

Рафинирование по этому методу обходится очень дорого и поэтому применяется в ограниченных масштабах.

Для получения алюминия особой чистоты широкое применение получил метод зонной перекристаллизации, в основе которой лежит не одинаковое распределение примесей алюминия (или другого рафинируемого металла) между жидкой и твердой фазой при частичном расплавлении.

Процесс зонной перекристаллизации алюминия практически ведут следующим образом. Слиток алюминия высокой чистоты (А99, А995), очищенный от пленки окислов травлением, помещают в графитовую лодочку и затем в кварцевую трубку, внутри которой создается - вакуум (остаточное давление не выше 0,1 Па (10-4— 10-5 мм рт. ст.). Снаружи вдоль трубки медленно (1 см в минуту) передвигают узкий нагреватель (обычно кольцо высокочастотного индуктора), с помощью которого создается узкая расплавленная зона слитка (25—30 мм). Если в алюминии нет примесей второй группы, более чистой получается та часть слитка, с которой начиналась зонная переплавка. Обычно зонную переплавку повторяют в одном направлении подряд 10—15 раз, после чего можно получить металл особой чистоты (до 99,9999% А1).

ТИТАН, МАГНИЙ И ИХ СПЛАВЫ

Титан — металл серебристого цвета с голубоватым отливом; имеет невысокую плотность 4,507 г/см3; плавится при температуре около 1660° С, кипит при 3260° С. Титан имеет две аллотропические модификации; до 882° С существует a-титан, имеющий гексагональную решетку и при более высоких температурах b-титан с кубической объемноцентрированной решеткой.

Механические свойства титана значительно изменяются от содержания в нем примесей. Чистый титан ковок и имеет невысокую твердость НВ ~ 70; технический металл хрупок и тверд (НВ180— 280).

Вредными примесями титана являются азот и кислород, резко снижающие его пластичность, а также углерод, который при содержании более 0,15% снижает ковкость, затрудняет обработку титана резанием и резко ухудшает свариваемость. Водород сильно повышает чувствительность титана к надрезу, поэтому этот эффект называют водородной хрупкостью.

На поверхности титана образуется стойкая оксидная пленка, вследствие чего титан обладает высокой сопротивляемостью коррозии в некоторых кислотах, в морской и пресной воде. На воздухе титан устойчив и мало изменяет свои механические свойства при нагреве до 400° С. При более высоком нагреве он начинает поглощать кислород и постепенно ухудшаются его механические свойства, а выше 540° С—становится хрупким. При нагреве выше 800" С титан энергично поглощает кислород, азот и водород, что используется в металлургии для раскисления стали.

Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.