рефераты бесплатно

МЕНЮ


Реферат: Очистка сточных вод целлюлозно-бумажной промышленности с использованием расходомеров

Реферат: Очистка сточных вод целлюлозно-бумажной промышленности с использованием расходомеров

ВВЕДЕНИЕ

 

Основными источниками загрязнения атмосферы с сульфат-целлюлозном производстве являются: содорегенерационный, варочно-промывной, известерегенерационный и отбельный цеха, окислительная установка, цех приготовления отбельных растворов.

В зависимости от принятой схемы производства могут возникнуть дополнительные источники загрязнения из отделений цеха переработки побочных продуктов (очистки и дезодорации скипидара, получение одоранта сульфана; ректификации скипидара; разложения сульфатного мыла; ректификации таллового масла и др.).

(ЦБП) невозможно без осуществления учета объема сточных вод, поступающих в соседние с предприятием водоемы. Для метрологического учета сточных вод необходимы соответствующие расходоизмерительные приборы: расходомеры и водосчетчики.

Большие объемы сточных вод в ЦБП предполагают необходимость измерения их расхода в трубопроводах большого диаметра или в открытых каналах. Также необходимо учитывать, что в стоках предприятий ЦБП находится большое количество взвешенных частиц и химических веществ, поэтому расходомеры должны безупречно работать в загрязненных и агрессивных жидкостях.


ГЛАВА 1. ВЫБРОСЫ В АТМОСФЕРУ И СБРОСЫ В ГИДРОСФЕРУ В СУЛЬФАТ-ЦЕЛЛЮЛОЗНОМ ПРОИЗВОДСТВЕ

 

Варочно-промывной цех. В этом цехе имеется несколько источников выбросов.

При периодическом методе варки с терпентинной сдувкой, вместе с паром удаляются; остаточный воздух из щепы, скипидар, сероводород, метилмеркаптан (ММ), диметилсульфид (ДМС), диметилдисульфид (ДМДС). Парогазовая смесь терпентинной сдувки, от которой в щёлокоуловителях отделяются захваченные капельки щёлока, конденсируется в теплообменниках. Отсюда непрерывно удаляются несконденсировавшиеся газы, количество и состав которых зависит от вида вырабатываемой целлюлозы и связанного с этим расхода щёлочи на варку, а также от температуры воды, подаваемой на теплообменник.

При непрерывной варке целлюлозы, выдувочные пары направляются в систему пропаривания щепы, откуда избыток паров поступает в холодильник, аналогичный терпентинному конденсатору. Кроме этих источников загрязнения, есть ещё вентиляционные выбросы из-под колпаков вакуум-фильтров, вытяжки из выдувного резервуара (при холодной выдувке), бака слабых щёлоков, бака- пеносборника.

Выпарной цех. Главным источником выбросов в этом цехе является парогазовая смесь, которая удаляется вакуум-насосом из межтрубного пространства корпусов. Основной компонент, загрязняющий воздух, – сероводород. Кроме того, в выбросах содержится также метилмеркаптан и, в незначительных дозах, диметилсульфид, диметилдисульфид и метанол. Появление сероводорода и метилмеркаптана обусловлено изменением pH при упаривании и воздействием температуры и разрежения. Это приводит к разложению сульфида и меркаптида натрия и выделению этих кислых газов в паровое пространство.

Окислительная установка. Общее количество выбрасываемой ею газовоздушной смеси зависит от расхода воздуха на окисление, количества газов, подаваемых на установку, и типа окислительной установки.

Содорегенерационный цех. Дурнопахнущие компоненты в дымовых газах появляются в тех местах, где чёрный щёлок соприкасается с газами: в топке и в газоконтактном испарителе. Перегрузки содорегенерационных котлоагрегатов(СРК), также способствую повышению количества выбросов дурнопахнущих компонентов с дымовыми газами. В дымовых газах СРК содержатся не только газообразные соединения, но и твёрдые частицы, составляющие пылевой унос.

Содержание пылевого уноса в дымовых газах СРК перед газоочистным аппаратом изменяется в зависимости от количества сульфата натрия, добавляемого к щёлоку перед сжиганием, от схемы СРК и аэродинамического режима его работы, а также от соотношения органической и минеральной частей сухого вещества чёрного щёлока и выхода целлюлозы из древесины.

Газоконтактный испаритель. Он предназначен для уплотнения чёрного щёлока 50– 65 % сухих веществ. Щёлок, находясь в газоконтактном испарителе, поглощает из дымовых газов углекислый газ, сернистый и серный ангидриды, обуславливающие выделение сероводорода и метилмеркаптана вследствие понижения pH; выделению сероводорода при газоконтактной выпарке способствует также повышение концентрации остаточного сульфида натрия в чёрном щёлоке. Чем выше сульфидность белого щёлока, тем большее количество остаточного сульфида натрия и сероорганических соединений оказывается в чёрном щёлоке и тем загрязнённее дымовые газы.

Растворитель плава (РП). Плав, образующийся при сжигании чёрных щёлоков в СРК и состоящий из карбоната и сульфида натрия с небольшой примесью невосстановленного сульфата натрия, поступает в растворитель. Здесь плав растворяется в щёлоке. При контакте щёлока с плавом выделяется значительное количество парогазовой смеси, которая удаляется из растворителя плава через вытяжные трубы и выбрасывается в атмосферу. Пылевой унос из растворителя плава на 90 % состоит из соды. В зелёном щёлоке содержится значительное количество сульфида и меркаптида натрия, что предопределяет содержание сероводорода в газовой фазе.

Известерегенерационные печи (ИРП). В печах при обжиге каустизационного шлама и природного известняка образуются дымовые газы. Основными компонентами дымовых газов являются пыль кальциевых солей (12 г/нм3), образующаяся в результате механического уноса газовым потоком, и сернистый ангидрид (0.86 г/нм3 сухого газа), образующегося при сжигании высокосернистого мазута, а также сероводород и другие серосодержащие газы.

Отбельный цех. В процессе отбеливания целлюлозы традиционно используют либо сам хлор, либо его производные (оксид хлора, хлораты и гипохлориты).

Одним из наиболее опасных с точки зрения охраны окружающей среды объектов сульфат-целлюлозного производства является содорегенерационный котлоагрегат и его технологический узел – бак-растворитель плава (РП СРК).

Из результатов обследования количества и состава парогазовых выбросов РП СРК ведущих предприятий сульфат-целлюлозного производства следует, что расходы выбросов зависят от мощности котлоагрегата, высоты и диаметра вытяжной трубы, по которой они выводятся из бака растворителя в атмосферу, угла раскрытия шиберных устройств на этих трубах, состава слабого белого щёлока и уровня его в баке-растворителе, времени года и региона расположения производства.

Сбросы в гидросферу и педосферу в сульфат-целлюлозном производстве.

Основными источниками загрязнения гидросферы и педосферы в сульфат-целлюлозном производстве являются отбельный, варочный и кислотный цеха.

Варочный и кислотный цеха. В сток попадают органические соединения, образующиеся при варке, и остаточные химикаты. Так при выпуске 3 млн. т. в год целлюлозы образуется 3.5 млн. т. в год отработанных щёлоков в пересчёте на сухое вещество или около 7 млн. т. в год в пересчёте на 50 % концентрат.

Из них около 2 млн. т. в год можно утилизировать в виде спирта, кормовых дрожжей и технических лигносульфонатов. Остальные 70 – 75 % сухих веществ отработанных щёлоков сбрасывается в очистные сооружения или непосредственно в водоёмы.

Отбельный цех. В процессе отбеливания целлюлозы традиционно используют либо сам хлор, либо его производные (оксид хлора, хлораты и гипохлориты), а при делигнификации древесины содержащей фенольные фрагменты лигнин (содержание которого в древесине лиственных пород 20 – 30 %, в хвойных породах – до 50%) взаимодействует с хлорными реагентами, образуя диоксины и фураны (или их предшественников), которые являются высокотоксичными экотоксикантами.

Сбросы в реки и почву с ЦБК увеличивают содержание взвешенных веществ, сульфатов, хлоридов, нефтепродуктов, органических соединений, ряда металлов, веществ метоксильных, карбоксильных и фенольных групп. По этим параметрам ПДК превышены в несколько раз.

Глава 2. ИМИТАЦИОННЫЕ ИСПЫТАНИЯ РАСХОДОМЕРОВ СТОЧНЫХ ВОД ДЛЯ ЦЕЛЛЮЛОЗНСЬБУМАЖНОЙ ПРОМЫШЛЕННОСТИ

(ЦБП) невозможно без осуществления учета объема сточных вод, поступающих в соседние с предприятием водоемы. Для метрологического учета сточных вод необходимы соответствующие расходоизмерительные приборы: расходомеры и водосчетчики.

Большие объемы сточных вод в ЦБП предполагают необходимость измерения их расхода в трубопроводах большого диаметра или в открытых каналах. Также необходимо учитывать, что в стоках предприятий ЦБП находится большое количество взвешенных частиц и химических веществ, поэтому расходомеры должны безупречно работать в загрязненных и агрессивных жидкостях.

Погружные вихревые расходомеры являются новыми перспективными приборами, предназначенными для измерения расхода различных технологических жидкостей ЦБП, в частности сточных вод [1]. Но выпуск и эксплуатация таких приборов существенно сдерживается практическим отсутствием в России проливных установок на диаметры, превышающие 300 — 400 мы. В результате невозможно осуществить первичную и периодическую поверку таких приборов, испытания после ремонта и т.д. Поэтому крайне актуальна разработка оборудования и методов для имитационных испытаний. Особенно важна, на наш взгляд, возможность технологических испытаний расходометрической аппаратуры на таких стендах в рабочих условиях, в частности на реальной измеряемой среде. Поэтому основные задачи нашего исследования — разработка конструкции имитационного стенда, имитирующего гидродинамические воздействия на приемник-преобразователь вихревых колебаний (ППВК) расходомера, математической модели для оптимизации его параметров и расчета системы управления.

На рис. 1 показан стенд, позволяющий не только поверять и испытывать одиночный прибор, но и сравнивать работу двух его экземпляров. При этом каждый из них может работать на разных жидкостях, например на чистой воде и сточных водах.

Считая расходомер, установленный в воде образцовым, можно исследовать дополнительные факторы, возникающие при работе прибора на различных технологических жидкостях целлюлозно-бумажного производства. Анализ полученных данных позволяет учесть влияние условий эксплуатации на показания прибора и ввести, если это необходимо, коррекцию в его показания.

В основе работы стенда лежит допущение о том, что для получения электрического сигнала определенной формы и величины с ППВК необходимо воздействовать на него перепадом давления также строго определенной формы. Если на выходе ППВК будет формироваться сигнал, близкий к реально действующему в приборе на заданном расходе, то и гидродинамический режим работы прибора будет близок к реально существующему.

В состав стенда входят: две одинаковые цилиндрические камеры / и 2, торцевые стенки которых представляют собой мембраны 3 и 4 с жестким центром и мембраны 5 и 6 без жесткого центра. Камеры заполняются рабочей жидкостью через патрубки 7 и 8. Через пробки 9 и 10 из них выпускается остаточный воздух. Поперек камер устанавливаются перегородки Пи 12, в которые через уплотнения вставляются тела обтекания образцового и поверяемого расходомера. Через патрубки 13 и 14 выпускается жидкость. Боковые стенки тела обтекания расходомеров с отверстиями каналов обратной связи

(КОС) должны быть направлены параллельно перегородке. С жесткими центрами мембран 3 и 4 соединен линейный электромагнитный привод 15, приводящий мембраны в колебательное движение. Привод стенда охвачен обратной связью по выходному сигналу расходомера через регулятор и усилитель мощности электропривода.

Входным эталонным сигналом для стенда является электрический сигнал с выхода образцового расходомера на заданном расходе, предварительно записанный на проливной установке и воспроизведенный с помощью ноутбука. При наличии цепи обратной связи в процессе работы стенда на мембранах обоих камер создаются одинаковые механические колебания, параметры которых определяются эталонным сигналом. В обеих камерах на срезах КОС создаются знакопеременные перепады давления, возникают знакопеременные перетоки технологической жидкости через чувствительные элементы образцового и поверяемого расходомера. Таким образом, при одинаковой геометрии камер стенда в них протекают одинаковые гидродинамические явления. Это позволяет считать, что подавая сигналы, предварительно записанные на реальной проливной установке для различных поверяемых расходов, мы будем имитировать на стенде работу расходомера в условиях различных расходов.

В процессе поверки электронные блоки образцового и поверяемого расходомеров формируют определенное число импульсов, пропорциональное некоторому имитационному объему жидкости, прошедшему через приборы. Это количество фиксируется соответствующими счетчиками импульсов. Сравнивая показания счетчиков импульсов образцового и поверяемого расходомеров, можно судить о погрешности измерения на данном поверочном расходе.

Для оптимизации конструктивных и метрологических параметров установки, а также с целью исследования погрешности воспроизведения расхода на имитационном стенде авторы статьи разработали математическую модель стенда в пакете Simulink программы Matlab.

Для того чтобы описать движение жидкости в герметичных камерах, нужно рассмотреть протекание жидкости через К8С расходомера. Используя метод контрольного объема [2], получим уравнение для средней скорости движения жидкости в КОС:


В стенд включен линейный электромагнитный привод, создающий силу которая будет действовать на мембрану камеры.

Для имитационной модели блока электропривода инерционные свойства катушки привода можно задать в виде передаточной функции первого порядка

Под действием движущейся суспензии в КОС на чувствительный элемент ППВК (гибкий электрод) действует сила, приложенная к его центру площади, которая совпадает с центром масс (для плоского электрода).

В связи с изложенными теоретическими предпосылками, учитывая выражения (1) — (5), разработана имитационная модель стенда в среде Simulink (рис. 2).

Стенд состоит из подсистем и блоков:

KameraLINEARIZE 1 и Kamera LINEARIZE 2 - подсистема, моделирующая камеры стенда согласно уравнению (5);

Flowmetr 1 и Flowmetr_2 — подсистема, решающая одновременно дифференциальные уравнения движения электрода ППВК под действием набегающего потока в КОС и электронного блока, который преобразует отклонение электрода в электрический сигнал;

 ЕМР — блок, моделирующий электромагнитный привод стенда в соответствие с выражениями (3);

PID — регулятор цепи обратной связи с устройством сравнения сигналов;

Transport Delay — блок, необходимый для устранения фазового сдвига между входным и выходным сигналами при их вычитании;

Error_% — дисплей, индицирующий динамическую ошибку воспроизведения эталонного сигнала с помощью блока RMS.

Исследование модели стенда проводилось с эталонными сигналами, соответствующими диапазону реальных скоростей жидкости в трубопроводе от 0,1 до 4 м/с (от минимального до номинального). Выяснилось, что стенд воспроизводит эталонный сигнал со всеми его особенностями с высокой точностью. Пример осциллограммы входного и выходного сигналов приведен на рис. 3.

В качестве критерия работы стенда был принят показатель динамической погрешности. Динамическая погрешность определялась как отношение разности действующих значений входного и выходного сигналов к действующему значению входного. В рассмотренном случае погрешность воспроизведения не превышала 2 % во всем исследуемом диапазоне.

Полученная в ходе разработки стенда математическая модель в виде имитационной модели в среде Simulink пакета Matlab позволит в ходе дальнейшей работы решить несколько задач:

- оптимизировать настройки регулятора электропривода стенда;

•  исследовать влияние на работу стенда его конструктивных характеристик и выбрать наиболее оптимальные;

•  исследовать влияние допусков изготовления деталей стенда, например его камер, на погрешность воспроизведения эталонного сигнала;

•  выявить особенности работы стенда на различных технологических жидкостях, например волокнистой суспензии различной концентрации, оборотной воде, сточных водах;

•  отработать методику испытаний расходомеров.

Таким образом, предлагаемый подход к технологическим испытаниям приборов совместно с моделированием работы отдельных узлов и испытательного оборудования в целом позволяет выйти на новый уровень проектирования, испытаний и эксплуатации данного вида расходомеров в целях улучшения экологической обстановки на предприятиях ЦБП.

   

Глава 3. МАТЕРИАЛЫ С ПРИМЕНЕНИЕМ ГИДРОЛИЗНОГО ЛИГНИНА И ОТХОДОВ ЦЕЛЛЮЛОЗНО-БУМАЖНОГО ПРОИЗВОДСТВА

загрязнение атмосфера гидросфера сточный вода

Применение гидролизного лигнина. Предприятия строительных материалов, расположенные вблизи гидролизных заводов, могут утилизировать лигнин — один из наиболее емких отходов лесохимии.

Гидролизный лигнин получают при переработке древесины хвойных и лиственных пород гидролизом разбавленной серной кислотой. Выход лигнина в зависимости от вида древесины составляет 17—32%, его образуется ежегодно около 5 млн. т.

Гидролизный лигнин представляет собой природное высокомолекулярное вещество с разветвленными макромолекулами, образовавшимися при полимеризации спиртов ароматического ряда. Он имеет молекулярную массу около 11 000, нерастворим в воде и органических растворителях. Этот рыхлый продукт с размером кусков до 40 см имеет коричневый цвет и влажность до 70%. При нагревании до температуры 400—600 °С в парогазовой среде он распадается с выделением 40—50% угля (полукокса), 13—20% смолы, 15—30% надсмольной воды, небольшого количества жидких (ацетона, метилового спирта) и газообразных продуктов (СО, С02, этилена).

Сейчас сложились следующие основные направления применения гидролизного лигнина: как топливно-выгорающей добавки в производстве керамических материалов; заменителя опилок в строительных изделиях; сырья для получения феноллигниновых полимеров; пластификатора и интенсификатора измельчения.

Опыт работы ряда кирпичных заводов позволяет считать лигнин эффективной выгорающей добавкой. Он хорошо смешивается с другими компонентами шихты, не ухудшает ее формовочных свойств и не затрудняет резку бруса. Его применение наиболее продуктивно при сравнительно небольшой карьерной влажности глины.

Запрессованный в сырец лигнин при сушке горит. Горючая часть лигнина полностью улетучивается при температуре 350—400 °С, зольность составляет 4—7%. Для обеспечения кондиционной механической прочности обыкновенного керамического кирпича лигнин следует вводить в формовочную шихту в количестве до 20—25% ее объема. Обладая высокой дисперсностью, лигнин не требует, в отличие от большинства других видов выгорающих добавок, измельчения.

При использовании обычных древесных опилок в кирпиче часто образуются крупные незамкнутые поры. Причиной их появления является то, что такие многозольные добавки как сланцы, бурый уголь, изгарь, не сгорают полностью из-за трудного доступа воздуха в заполненные золой поры кирпича, а использование лигнина в сочетании с этими добавками устраняет или ослабляет эти недостатки.

   Лигнин может быть использован как порообразующая добавка в производстве теплоизоляционных и легких конструкционных керамических изделий. Также он может применяться вместо опилок в производстве аглопорита. При введении лигнина улучшаются гранулометрический состав шихты (она более интенсивно и равномерно спекается) и условия охлаждения аглопорита на агломерационной машине. Добавка лигнина, увеличивая газопроницаемость шихты, тем самым снижает разрежение в вакуум-камерах ленточной агломерационной машины на 200—400 Па. Введение в шихту лигнина увеличивает пористость готового продукта за счет образования мелких замкнутых пор с тонкими перегородками, что позволяет снизить среднюю плотность аглопоритового щебня на 150—180 кг/м3, уменьшить расход угля на 20—25% и одновременно повысить приведенную прочность (отношение прочности к квадрату средней плотности).

Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.