рефераты бесплатно

МЕНЮ


Курсовая работа: Теплопостачання району міста

Графіки зображені на рисунку 4.1.

4.3  Побудова графіка тривалості теплових навантажень

Графік тривалості теплових навантажень дозволяє врахувати повторність теплових навантажень на протязі року. Це необхідно знати для встановлення економічного режиму роботи теплового обладнання, вибору найвигідніших параметрів теплоносія, розрахунку вироблення енергії і т.п.

Цей графік являє собою залежність теплового навантаження від середньої температури навколишнього повітря і тривалості дії цих температур, тобто Q=f(tН) і Q=f(n).

Графік будується в двох квадрантах: у верхньому лівому будуються залежності  QO=f(tН), QB=f(tН), QГВ=f(tН), SQ=f(tН) , де SQ= QO+ QB+ QГВсер.т.

У верхньому правому квадранті будується залежність сумарного теплового навантаження від кількості годин за опалювальний період з середньодобовою температурою навколишнього повітря для умов району або населеного пункту – району Харкова (SQ= f(n)).

Значення SQ переноситься з лівого квадранту на вісь ординат. На перетині значень сумарних теплових навантажень відповідно середньодобовій температурі навколишнього повітря, з числом годин за опалювальний період, відповідно до прийнятих значень середньодобової температури, отримують точки для побудови графіка в правому квадранті.

Побудова графіків проводиться з допомогою таблиці 4.1:

Таблиця 4.3.1 – Розрахункові теплові навантаження

Теплове навантаження, МВт

Температура навколишнього повітря, оС

tнк

tнв

tно

70.555 204.609 289.275

при tН£ tНВ

18.815 77.14 77.14

34.445 34.445 34.445
Всього 123.815 316.194 400.86

Графіки зображені на рисунку 4.2.

Площа, обмежена осями координат і графіком тривалості сумарного теплового навантаження, дорівнює річним витратам теплоти споживачами району без врахування витрат теплоти на технологічні потреби.

5  Транспортування теплоносія. Визначення витрати

теплоносія.

5.1  Визначення витрат теплоносія

Розрахункові витрати теплоносія на опалення

  , кг/с                                                                                       (5.1)

де tр1 – розрахункова температура теплоносія в прямому теплопроводі, оС (приймаємо tр1=150оС [1]);

     tр2 – розрахункова температура теплоносія в зворотньому теплопроводі, оС (приймаємо tр2=70оС [1]).

За формулою (5.1)

   , кг/с.

Розрахункові втрати теплоносія на вентиляцію

   , кг/с                                                                          (5.2)

За формулою (5.2)

  , кг/с.

Розрахункові витрати теплоносія на гаряче водопостачання для закритих систем теплопостачання при двохступінчастих послідовній і змішаній схемах приєднання підігрівачів

  , кг/с                                                         (5.3)

де tП – температура водопровідної води після підігрівача першої ступені, оС (приймаємо рівним 5 оС [1]);

     t20 – температура теплоносія в зворотньому теплопроводі в точці перелому графіка, оС (приймаємо рівним 5 оС [1]).

За формулою (5.3)

  , кг/с.

Максимальні витрати теплоносія на гаряче водопостачання

  , кг/с                                                                          (5.4)

За формулою (5.4)

  , кг/с.

Розрахункові сумарні витрати теплоносія в двохтрубних магістральних і розподільних мережах закритих систем теплопостачання:

прямого трубопроводу

   ,  кг/с                                                                          (5.5)

За формулою (5.5)

  , кг/с;

зворотнього трубопроводу

  , кг/с                                                                                                 (5.6)

За формулою (5.6)

  , кг/с      .

5.2  Тепловий розрахунок ділянки теплової мережі

Метою теплового розрахунку ділянки теплової мережі являється визначення теплових втрат теплопроводу, розрахунок температурного поля навантаження коло теплопроводу, що включає визначення температур ізоляції, повітря в каналі, стінок каналу і грунту, розрахунок падіння температури теплоносія вздовж ділянки теплопроводу, розрахунок товщини теплової ізоляції і вибір доцільного матеріалу теплової ізоляції.

Діаметр труби прямого і зворотнього теплопроводів магістральних або розподільних мереж визначається за формулою

  , м                                                                                    (5.7)

де r – густина теплоносія відповідно в прямому і зворотньому трубопроводі, кг/м3 (rп=916.93 кг/м3 для температури води в прямому трубопроводі 150оС, rз=977.81 кг/м3 для температури води 70оС);

    с – швидкість руху теплоносія, м/с (для прямого теплопроводу с=2.5 м/с, для зворотнього – с=1.5 м/с).

    За формулою (5.7)

  , м;

   , м.

По ГОСТ 10706-76 вибираємо труби прямого і зворотнього теплопроводів з умовним проходом 900 мм; зовнішній діаметр 920 мм; внутрішній діаметр 898 мм, додаток 5 [1].

Вибираємо непрохідний канал типу 2КСІ20-150 (рисунок 5.2.1):

а=1570 мм, б=160 мм, в=1730 мм, h=296 мм, H=1500 мм.

Еквівалентний внутрішній діаметр непрохідного каналу

  , м                                                                                                   (5.8)

де П – внутрішній периметр перерізу каналу, м (П=2×(2×а+б+Н)=9600 мм).


                              Рисунок 5.1 – Канал типу 2КСІ20-150

За формулою (5.8)

  , м.

Термічний опір каналу і грунту

  , м×К/Вт                                                (5.9)

де a – коефіцієнт тепловіддачі від повітря до внутрішньої поверхні каналу, Вт/(м2×К) (a= 8.14 Вт/(м2×К) [8]);

     lгр – коефіцієнт теплопровідності грунту, Вт/(м×К) (lгр=1.5 Вт/(м×К) [8]);

      h – глибина закладення осі теплопроводу , м (h=1.5 м).

За формулою (5.9)

   , м×К/Вт.

Температура повітря в каналі

  , оС                                                                                (5.10)

де tо – середньорічна температура навколишнього повітря (для підземних теплопроводів мілкого закладання (h/dн<2) за температуру навколишнього середовища tо приймається температура навколишнього повітря tн, tо=-18 оС)

Sq=q1+q2 – сумарні втрати тепла відповідно прямим і зворотнім трубопроводами (q1=252.88, Sq=432.68 , додаток 6 [1]) ,Вт/м.

За формулою (5.10)

   , оС.

Термічний опір прямого теплопроводу

   , (м×К)/Вт                                                                                     (5.11)

де tсер1 – середня температура теплоносія в прямому теплопроводі, оС (tсер1=110 оС).

За формулою (5.11)

  , (м×К)/Вт.

Термічний опір зворотнього теплопроводу

   , (м×К)/Вт                                                                          (5.12)

де tсер2 – середня температура теплоносія в зворотньому теплопроводі, оС (tсер1=40 оС).

За формулою (5.12)

  , (м×К)/Вт.

Термічний опір ізоляції прямого теплопроводу

  , (м×К)/Вт                                                                   (5.13)

де dн1 – зовнішній діаметр прямого теплопроводу з ізоляцією, м.

За формулою (5.13)

  , (м×К)/Вт.

Термічний опір ізоляції зворотнього теплопроводу

  , (м×К)/Вт                                                                 (5.14)

де dн2 – зовнішній діаметр зворотнього теплопроводу з ізоляцією, м.

За формулою (5.14)

  , (м×К)/Вт.

Товщина шару ізоляції прямого теплопроводу

  , м                                                                           (5.15)

де lіз – коефіцієнт теплопровідності основного шару ізоляції (lіз=0.047, додаток 7 [1]), Вт/(м×К);

     d1- зовнішній діаметр ізолюючого прямого теплопроводу, м.

  , м.

Товщина шару ізоляції зворотнього теплопроводу

  , м                                                                          (5.16)

де d2- зовнішній діаметр ізолюючого зворотнього теплопроводу, м.

  , м.

Перерахунок величин термічного опору поверхні ізольованого теплопроводу по знайденому dіз не проводиться, оскільки воно мале в порівнянні з Rіз.

5.3  Прокладання теплової мережі

Прокладання теплової мережі може бути підземним, наземним і надземним. Підземне прокладання виконується в непрохідних, напівпрохідних і прохідних каналах, а також безканально в залежності від конкретних умов.

 Вибираємо підземне прокладення теплової мережі (оскільки воно найбільш поширене) в непрохідних каналах.

 Для захисту теплопроводів від впливу грунтових, атмосферних і паводкових вод і для забезпечення вільного теплового продовження трубопроводи прокладають в каналах, кладучи їх на опори. В цілях виключення можливого попадання води в канали, шви між окремими його секціями щільно заповнюють цементним розчином, а зовнішню  поверхню стін і перекриття покривають двома шарами бітума. Висока якість покриття досягається при механізованому нанесенні бітума.

Непрохідні канали застосовують для прокладання теплопроводів діаметром від 700 мм включно, не залежно від  числа труб. Конструкція каналу залежить від вологості грунту. В сухих грунтах часто роблять блочні канали з бетонними або цегляними стінками, або залізобетонні одно- і багатокомірні.

5.4   Теплові пункти. Схеми приєднання споживачів до теплової мережі

Головне призначення теплового пункту полягає у встановленні і підтримуванні параметрів теплоносія на рівні, який забезпечує надійну і економічну роботу теплоспоживних установок.

Перевагою схеми приєднання через тепловий пункт є те, що тепловий пункт обслуговує одразу групу будівель, тому дозволяє обходитись без індивідуальних регуляторів. При цьому в якості імпульсу для регулювання опалення можуть бути використані або температура повітря в приміщенні, що опалюється, або температура повітря в пристрої. Що моделює температурний режим в приміщеннях.

На центральних теплових пунктах, як правило, розміщені центральні водоводяні підігрівачі для опалення і гарячого водопостачання, центральна змішувальна насосна установка мережевої води, підкачуючі насоси холодної водопровідної і мережевої води, прилади для вимірювань і автоматики. Кількість вузлів обслуговування при використанні центральних теплових пунктів зменшується, що спрощує експлуатацію. Зменшуються капіталовкладення на підігрівачі  гарячого водопостачання, насосні установки, регулюючі пристрої. Однак збільшуються капіталовкладення на спорудження розподільчої мережі, оскільки замість двохтрубної мережі на цих участках необхідно споруджувати чотирьохтрубні розподільні мережі. Степінь централізації теплових пунктів визначається техніко-економічними розрахунками з врахуванням густини теплового споживання, планування району забудови і режимів теплового споживання.

На рисунку 5.1 зображено схему теплового пункту для споживачів зі схемами приєднання О(Н), Г(АН),В(ДС), який складається з:

1 – моделюючий пристрій; 2 – вентилі теплової мережі; 3 – фільтр-грязовик;  4 – тепломір; 5 – регулятор опалення; 6 – насос опадення змішувальний; 7 – насос гарячого водопостачання циркуляційний; 8 – підігрівач нижньої ступені; 9 – підігрівач верхньої ступені; регулятор температури води; 10 – опалювальний пристрій; 11 – обробка води; 12 – водомір.

Схема приєднання споживачів до теплової мережі визначається видом їх теплового навантаження, температурним графіком роботи, видом і параметрами теплоносія на вході і призначення будівлі, що опалюється.


Рисунок 5.1 – Схема теплового пункту

Схема незалежного приєднання системи опалення до теплових мереж  О(Н). Якщо тиск в зворотньому трубопроводі в тепловій мережі вище допустимого тиску для системи опалення, будівля має значну висоту, або розміщено на високому місці по відношенню до ближніх будинків, то системи опалення приєднують по незалежній схемі. Згідно з БНіП ІІ-Г.10-73, по незалежній схемі допускається приєднувати будівлі висотою 12 поверхів і вище. Незалежна схема рекомендується в будівлях, які призначені для зберігання художніх та інших цінностей (музеї, архіви та ін.). Незалежна схема основана на відділенні системи опалення від теплової мережі з допомогою теплообмінника, внаслідок чого тиск в тепловій мережі не може передаватися теплоносію системи опалення. Циркуляція теплоносія здійснюється з допомогою спеціально встановлених циркуляційних насосів. В якості циркуляційних насосів при встановленні їх в ІТП використовують безшумні безфундаментні насоси типу ЦВЦ, а при встановленні їх на ЦТП ― відцентрові насоси типу К і КМ. Незалежну систему, як правило, обладнують розширювальним сосудом. Витікання води з системи опалення поповнюються з теплової мережі автоматично по рівню води в бачку.

Схему з безпосереднім водозабором Г(БВ) на гаряче водопостачання приймають у випадку, якщо її доцільність підтверджується техніко-економічним розрахунком. При цьому необхідно враховувати питання експлуатації системи теплопостачання.

Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.