рефераты бесплатно

МЕНЮ


Курсовая работа: Автоматизация процесса электролиза алюминия на примере ИркАЗ-РУСАЛ

·  Сервер базы данных – хранит архивную базу данных, обрабатывает запросы к ней со стороны различных клиентов, формирует сводки и отчеты.

·  Рабочее место (АРМ) системы – представляет собой персональный компьютер, подключенный к сети предприятия. На АРМе выполняется программа «клиент системы ТРОЛЛЬ», настроенный для конкретных целей использования (монитор оператора, АРМ старшего мастера, генератор сводок, АРМ руководителя и т.п.).

Подключение к БУ ТРОЛЛЬ

К блоку управления ТРОЛЛЬ-5, через специализированный разъем, по сети RS-485 подключаются различные датчики (возможно подключение исполнительных устройств). В основном это два типа оборудования:

·  Датчики, постоянно установленные на электролизерах. Например, датчик перекоса анодной рамы фирмы ТоксСофт. Датчик перекоса позволяет оперативно измерять угол перекоса анодной рамы, и соответственно автоматически выравнивать раму;

·  Датчики и исполнительные устройства системы централизованной раздачи глинозема. Система :ЦРГ разработки фирмы ТоксСофт требует всего одного-двух датчиков на электролизер. Существенно дешевле и надежнее использовать имеющеюся инфраструктуру ТРОЛЛЬ, чем создавать отдельное АСУ ТП для ЦРГ;

·  Переносные портативные приборы для разовых замеров. К таким приборам относятся разрабатываемые датчики температуры расплава и ликвидуса, а также датчик концентрации. При такой работе, прибор подключается к блоку управления ТРОЛЛЬ-5, в течении нескольких секунд БУ опознает прибор и по мере (и по окончании) работы получает данные из прибора, хранит и передает далее на верхний уровень.

Подключение в технологическую сеть

Для оборудования, которое работает на уровне группы ванн, корпуса или серии в целом, оборудование может быть подключено к технологической сети корпуса. К такому оборудованию относятся, например бригадный контроллер и шкафы работы с радиоприемниками крановых весов.

Подключение к верхнему уровню системы

Верхний уровень системы ТРОЛЛЬ-2000 построен так, что позволяет подключать к нему любую полностью или частично распределенную систему автоматического управления любыми технологическими процессами. В качестве расширения возможностей АСУ ТП электролиза нужно сразу к верхнему уровню системы подключить, например центральную заводскую лабораторию (ЦЗЛ). Информация с ЦЗЛ органически дополняет информацию алюминиевого производства о ходе технологического процесса.

Алгоритмы автоматического управления электролизером

Общие черты алгоритмов

Модель большинства алгоритмов нижнего уровня состоит из инициализации, определенных действий в течение некоторого времени и изменения цели управления (см. Термины и формулы) после выключения алгоритма.


Для всех алгоритмов изменение цели управления реализовано одинаково. В момент выключения алгоритма добавка к уставке напряжения скачком повышается на величину dUалг, в течение заданного времени T1алг она держится постоянной, а затем, в промежутке времени T2алг, линейно снижается до нуля. Таким образом, изменение цели управления представляет собой трапецию (см. рисунок), все параметры которой dUалг, T1алг и T2алг задаются с верхнего уровня системы и могут быть изменены даже для одного электролизера.

В случае наложения добавок к уставке напряжения из-за работы нескольких алгоритмов вступает в действие следующие правила приоритетности добавок:

Наиболее приоритетна добавка к уставке из-за замены штырей. Она аддитивна к любой другой добавке. Например, если в момент выключения режима выливки уставка была поднята после замены штырей, добавки суммируются

Добавки к уставке из-за ликвидации волнения, после обработки ванны и после выливки неаддитивны, то есть сумма добавок не изменяется. Изменяется лишь распределение этой суммы между различными добавками и, соответственно, характер изменения цели управления.

Ряд алгоритмов (например, автоматическое поддергивание кожуха) подразумевают возможность одновременного физического воздействия сразу на несколько электролизеров. Как правило, это нежелательно и для устранения такого эффекта в алгоритмы встроено свойство конвейерности, обеспечивающее разнос включения механизмов соседних ванн. Для примера рассмотрим то же поддергивание кожуха. Пусть оно должно происходить один раз в три часа и время поддергивания равно 5 секундам. Начало цикла конвейерного включения алгоритма будет установлено на 00:00, 03:00, 06:00 и т.д. Разнос между последовательными включениями будет равен 5сек*2=10сек. Теперь пусть в 04:15 одновременно была подача на электролизерах номер 1 и 2 (вполне возможная ситуация, если они простояли в ручном режиме более трех часов и одновременно были переведены в автомат). Время следующего поддергивания на электролизере 1 будет установлено на 06:00, а на электролизере 2 – на 06:00:10. Таким образом, следующие включения алгоритма на соседних ваннах уже будут разнесены по времени. Время разноса определяется номером электролизера, числом ванн в группе и максимальной продолжительностью воздействия. Пусть в рассматриваемом примере ванны секционированы по питанию двигателей в группы по 10 электролизеров. Тогда в момент начала цикла будут поддернуты кожухи на ваннах 1,11,21,31…, через 10 секунд – на ваннах 2,12,22,32… и т.д.

В других алгоритмах (регулирование МПР, срабатывание механизмов АПГ, …) принцип конвейера реализован несколько иначе, но основная идея – разнос одинаковых воздействий в группах электролизеров без необходимости наличия связи между блоками нижнего уровня, - остается той же самой.

Выливка

Алгоритм включается с панели блока ТРОЛЛЬ. В момент включения фиксируется цель управления выливки Uвыл. Она определяется следующим образом

Рассчитывается стандартная цель выливки U0выл, равная максимальному из величин: текущая цель управления или  уставка напряжения плюс добавка к уставке после выливки.

Если среднее за минуту приведенное напряжение U60 существует, то в качестве Цели выливки Uвыл берется максимальное из значений U0выл или U60

Если не определено, то в качестве Цели выливки Uвыл берется максимальное из значений U60раб или U0выл

Если нет ни U60, ни U60раб, то в качестве Цели выливки берется стандартная цель U0выл.

Таким образом, если среднее за минуту напряжение меньше стандартной цели выливки, то берется стандартная цель, в противном случае – среднее напряжение.

В процессе выливки контролируется текущее напряжение U электролизера, равное среднему за 3 сек. приведенному напряжению или, если его нет, среднему за 3 сек. рабочему напряжению.

Как только в процессе выливки напряжение U превышает цель выливки, запускается подача анодной рамы вниз на время sTвыл. Если U опускается ниже цели выливки на заданную величину DU1выл, движение анодной рамы прекращается.

Во время выливки обеспечиваются звуковые сообщения в корпус по громкой связи “Остановите выливку – низкое напряжение на ванне” (текущее напряжение меньше нижней границы достоверности напряжения) или “Двигатели не успевают за выливкой” (разница между текущим напряжением и целью выливки стала больше заданного максимального значения dUmax).

Отключается режим выливки или с панели блока ТРОЛЛЬ или автоматически. Последнее происходит следующим образом: если продолжительность работы алгоритма превысила заданное время T1выл, то по громкой связи в корпус выдается звуковое сообщение “Слишком долгая выливка”. Через 5 минут после этого режим выливки отключается. Если выливка физически не окончена, то выливщику после выдачи предупреждения следует выключить и включить режим вновь.

После завершения выливки цель управления изменяется только при выполнении следующих условий:

·  За время работы алгоритма были автоматические подачи анодной рамы вниз (была реальная выливка)

·  На ванне нет анодного эффекта и с момента окончания последнего прошло больше заданного времени

·  Электролизер не находится в режиме поиска анодного эффекта

Изменение цели управления происходит с учетом правил приоритетности добавок к уставке (см. Общие черты алгоритмов). Кроме того, в случае, если была реальная выливка (см. выше) АПГ ванны в течение заданного времени T2выл переходит на работу по таймеру.

Изменяемые с верхнего уровня параметры алгоритма:

Величина и поведение добавки к уставке напряжения после выливки

Максимальное время выливки T1выл

Стандартное время подачи анодной рамы sTвыл

Границы изменения напряжения при выливке DU1выл и DUвыл

Время работы АПГ по таймеру после выливки T2выл

Замена штырей

Алгоритм включается с панели блока ТРОЛЛЬ одной из кнопок ЗАМЕНА-1 или ЗАМЕНА-2. В случае, если в этот момент на электролизере зафиксирован прогноз анодного эффекта (см. Прогноз анодного эффекта), для снижения вероятности возникновения анодного эффекта во время замены запускается Nапг усиленных циклов АПГ. После чего на все время замены автоматическая работа дозаторов АПГ запрещается. Кроме того, до выключения этого режима запрещены автоматические подачи анодной рамы.

Отключается режим или с панели блока ТРОЛЛЬ или автоматически. Последнее происходит следующим образом: если продолжительность работы алгоритма превысила заданное время T1зам, то по громкой связи в корпус выдается звуковое сообщение “Слишком долгая замена штырей”. Через 5 минут после этого режим замены отключается автоматически. Если замена физически не окончена, то после выдачи предупреждения следует выключить и включить режим вновь.

Если замена штырей продолжалась больше заданного времени T2рег, она считается состоявшейся. В этом случае после отключения режима замены штырей АПГ электролизера в течение T2зам работает по таймеру. Кроме того, сразу после отключения этого регламентного режима изменяется цель управления электролизера на величину dUзам. Возможен один из двух вариантов поднятия уставки, выбор из которых предоставляется заказчику:

Вариант 1: В зависимости от того, какой из режимов (ЗАМЕНА-1 или ЗАМЕНА-2) был включен, уставка повышается на фиксированную величину dU1зам или dU2зам

Вариант 2: В момент включения и выключения режима определяются значения среднего за 3 мин. приведенного напряжение U180нач и U180кон и рассчитывается разница между ними dU180 = U180кон - U180нач. Если эта величина лежит в пределах между dU1зам и dU2зам, то в качестве dUзам берется она, в противном случае dUзам приравнивается к максимальному или минимальному из значений dU1зам или dU2зам.

В любом варианте изменение уставки происходит с учетом правил приоритетности добавок к уставке (см. Общие черты алгоритмов).

Изменяемые с верхнего уровня параметры алгоритма:

Величина и поведение добавки к уставке напряжения после замены штырей

Максимальное время замены штырей T1зам

Минимальное время регламентной операции T2рег

Время работы АПГ по таймеру после замены штырей T2зам

Автоматическое поддергивание кожуха

Алгоритм обеспечивает периодическое поддергивание кожуха электролизера. Параметры поддергивания – периодичность T1кож и время поддергивания sTкож задается с верхнего уровня. После того, как истечет таймер очередного поддергивания, и будут выполнены следующие условия

·  Кожух находится в аромате и не движется

·  Работа алгоритма разрешена

·  На ванне нет анодного эффекта и с окончания последнего АЭ прошло больше заданного промежутка времени

Выполняется подача кожуха вверх продолжительностью sTкож и перезапускается таймер очередного поддергивания с учетом принципа конвейера (см. Общие черты алгоритмов).

Изменяемые с верхнего уровня параметры алгоритма:

Периодичность поддергивания кожуха T1 кож

Время поддергивания кожуха sTкож

Сопровождение обработок электролизера

Алгоритм предназначен для уменьшения подачи глинозема в ванну через АПГ после обработки электролизера, компенсации потерь тепла при растворении большой массы глинозема и запрещения излишних подач анодной рамы, связанных с резким изменением напряжения после обработки. Он включается автоматически, в соответствии с расписанием обработок конкретного электролизера. Таблица обработок электролизера рассчитывается нижним уровнем системы при получении от верхнего уровня команды “Изменилось расписание обработок корпуса”. Расписание обработок корпуса вводится оператором верхнего уровня в виде набора записей вида

Время начала обработки Время окончания обработки Номер первого электролизера Номер последнего электролизера

Проводится каждый день /
по четным дням /
по нечетным дням

Из полученного расписания обработок корпуса программа создает таблицу обработок для данного электролизера, которая в дальнейшем хранится на нижнем уровне. Например, из записи в таблице корпуса, содержащей информацию об обработке, идущей от 90-го до 60-го электролизера с 16:00 по 16:30 получится, что обработка 80-го электролизера должна начаться в 16:10.

Алгоритм начинает работу за время T3обр до номинального начала обработки. В этот момент АПГ ванны переходит на редкое питание по таймеру с коэффициентом зарежения Kобр (на столько увеличивается время между срабатываниями дозаторов) и одновременно изменяется цель управления электролизера на величину dUобр. Изменение уставки происходит с учетом правил приоритетности добавок к уставке (см. Общие черты алгоритмов).

После того, как алгоритм поддержания МПР отрегулирует напряжение электролизера к новой цели управления, за время T1обр до начала обработки запрещаются автоматические подачи анодной рамы. Этот запрет действует до времени T2обр после обработки.

После отработки алгоритма (через промежуток времени T4обр после начала обработки) АПГ ванны переходит в фазу голодания регулирования концентрации глинозема.

При включении алгоритма ликвидации МГД-нестабильности или возникновения анодного эффекта, работа алгоритма прекращается автоматически. При этом сбрасываются запрещение автоматических подач анода и повышение уставки, обусловленное алгоритмом.

Изменяемые с верхнего уровня параметры алгоритма:

Величина и поведение добавки к уставке напряжения после обработки ванны

Периоды запрещения автоматических подач анодной рамы до и после обработки T1обр  и T2обр

Периоды перехода АПГ ванны на редкое питание до и после обработки T3обр и T4обр

Коэффициент зарежения питания после обработки Kобр

Минимальное время регламентной операции T2рег

В настоящее время алгоритм до конца не отлажен и в него могут быть внесены изменения и/или дополнения.

Поиск анодного эффекта

Алгоритм предназначен для того, чтобы периодически вызывать на электролизере анодный эффект. Он может быть включен вручную с панели блока ТРОЛЛЬ или с верхнего уровня системы или автоматически программой нижнего уровня. Последнее происходит через время (dTае-1час) после начала предыдущего анодного эффекта, где dTае – время между штатными анодными эффектами.

Работа алгоритма заключается в полном запрещении подачи глинозема в ванну через механизмы АПГ. Алгоритм завершается при возникновении на ванне анодного эффекта, после чего запрет АПГ снимается. Во время работы алгоритма происходит следующее:

·  Не изменяется цель управления после выливки и обработки электролизера

·  Не ликвидируется возникшая на электролизере МГД-нестабильность

·  Запрещается регулирование МПР вниз

Изменяемые с верхнего уровня параметры алгоритма:

Промежуток времени между штатными анодными эффектами dTае.

Прогноз анодного эффекта

Алгоритм определения прогноза анодного эффекта работает постоянно за исключением времени анодного эффекта и периода T3прг после него. Он предназначен для контроля работы механизмов АПГ и предотвращения серии подач анодной рамы вниз (поддавливания ванны) непосредственно перед анодным эффектом. В состоянии прогноза анодного эффекта для всех алгоритмов запрещены автоматические подачи анодной рамы вниз.

Алгоритм устанавливает признак прогноза анодного эффекта, если в течение времени T1прг производная фильтрованного напряжения по времени (см. Математический аппарат) будет больше, чем DUпрг.

Прогноз сбрасывается при возникновении анодного эффекта или если в течение времени T2прг производная фильтрованного напряжения по времени  будет меньше, чем DUпрг.

Изменяемые с верхнего уровня параметры алгоритма:

Время запрещения определения прогноза анодного эффекта после возникновения АЭ на ванне T3прг

Времена установления и сброса прогноза анодного эффекта T1прг и T2прг

Характерную величину производной напряжения DUпрг.

Сопровождение анодного эффекта

Состояние и продолжительность анодного эффекта фиксируется следующим образом. Считается, что на электролизере возник анодный эффект, если среднее за секунду рабочее напряжение Uраб на ванне превысит величину U1ае. Анодный эффект считается приостановленным, если Uраб станет меньше U2ае. Считается, что анодный эффект завершился, если анодный эффект приостанавливается на время, большее, чем dTае. При возникновении анодного эффекта

·  выполняются подряд N1ае усиленных циклов АПГ.

·  Отключаются все включенные регламентные режимы (выливка, перетяжка и выравнивание анодной рамы, замена штырей)

·  Отключаются алгоритмы сопровождения обработок электролизера, поиска анодного эффекта и ликвидации МГД-нестабильности

·  Сбрасываются изменения уставки, обусловленные работой всех алгоритмов, кроме алгоритма замены штырей

Если при возникновении анодного эффекта управление анодной рамой находится в автоматическом режиме, то программа выполняет подачу анодной рамы вверх максимальной длительностью sTае. Эта подача может быть и более короткой, т.к. если Uраб превысит величину U3ае, анодная рама останавливается.

После окончания анодного эффекта в течение времени T2ае АПГ работает по таймеру. Кроме того, на время T1ае запрещается автоматические подачи анодной рамы.

Изменяемые с верхнего уровня параметры алгоритма:

Параметры определения анодного эффекта U1ае, U2ае и dTае.

Число усиленных циклов АПГ N1ае, выполняемых при возникновении анодного эффекта.

Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.