рефераты бесплатно

МЕНЮ


Реферат: Радиоактивные изотопы и соединения

Составы сцинтилляторов весьма разнообразны и фирмы, производящие сцинтилляционные коктейли, часто не раскрывают их состав. Классический (едва ли не самым первый) жидкий сцинтиллятор — это толуольный раствор 2,5-дифенилоксазола (РРО) с добавкой 1,4-ди-[2-фенил-(5-окзазолил)]-бензола (РОРОР). Состав: 4 г РРО и 0,2 г РОРОР на 1 л толуола. Не вдаваясь в подробности, следует подчеркнуть, что это — неводная система, а водные растворы считать в таком сцинтилляторе не принято. Для измерения водных проб к такому сцинтиллятору добавляют тритон Х-100 до 30% по объему.

Другим вариантом "водолюбивого" сцинтиллятора является диоксановый: 60 г нафталина, 4 г РРО, 0,2 г РОРОР, 200 мл спирта и до 1 л диоксан марки "сцинтиляционный". Впрочем, большинство исследователей сегодня успешно пользуются готовыми фирменными коктейлями, справедливо не задумываясь над их составом.

Важными источниками ошибок для жидкостного сцинтилляционного счета являются "засветка" сцинтилляционной жидкости и электризация счетных флаконов. Оба эффекта легко нейтрализуются во времени (не спешите сразу считать, дайте пробам постоять в темном пространстве прибора несколько минут), кроме того, электризация почему-то чаще проявляется на стеклянных флаконах, и реже — на одноразовых пластиковых.

Внедрение в технологию биоскрининга радиометрических методов анализа подвигло разработчиков на создание высокопроизводительных сцинтилляционных счетчиков для измерения активности в планшетах. Для радиоактивных изотопов фосфора прибор используется в модификации с внешним твердым сцинтиллятором, который и является детектором. Для трития твердый сцинтиллятор добавляют прямо в лунку планшета в виде специальных бусинок и, так как эти бусинки являются одновременно компонентом биохимической реакции, то связанный с "бусами" меченый тритием лиганд считается сцинтиллятором, а не связанный, находящийся в растворе, — не считается. С радиохимической точки зрения эффективность счета в таких измерениях очень низкая, но для биоскрининга важно относительное распределение меченых соединений в системе "связанный-несвязанный", а высокая производительность и простота операций оправдывают колоссальные затраты на реализацию таких методов.

2.3. Иммиджеры

Очень полезной и эффективной оказалась "электронная авторадиография", возникшая сравнительно недавно, как результат развития микроэлектроники и компьютерной техники.

Фосфоимиджер — прибор для "электронной авторадиографии" фосфора-32. Кассета с многократно используемым экраном экспонируется с плоским образцом: гелем, хроматографической пластинкой и т.п. Затем экран помещается в прибор, в котором с помощью лазерного сканирования определяется местоположение и активность радиоактивного материала, экспонировавшегося с экраном.

Другая вариация на эту тему — это использование газопроточных счетчиков для "электронной авторадиографии". Представьте себе щетку для одежды, каждый волосок которой диаметром 0,2 мм является индивидуальным газопроточным счетчиком. Если вы совместите такую "щетку" общим размером 18 х 24 см с исследуемым плоским образцом, то на экране компьютера в реальном времени вы сможете наблюдать количественную картинку распределения "радиоактивных веществ" на плоскости вашего образца. Разные модификации такого прибора позволяют работать практически со всеми радионуклидами, которые применяются в life science.

Эффективность счета в этих приборах, конечно, не может быть высокой, однако для практической работы в life science этот недостаток с лихвой компенсируется быстротой и удобством "электронной авторадиографии", а также возможностью получения результата сразу в электронном виде.

3. Классификация и номенклатура

Все радиоактивные источники с технологической точки зрения делятся на закрытые и открытые. Закрытые источники — это радиоактивные препараты, помещенные в специальную защитную герметичную упаковку (как правило стальную), — предназначены для работ без вскрытия защитной оболочки.

В молекулярно-биологических и биохимических исследованиях используют открытые источники — твердые, жидкие или газообразные радиоактивные вещества или их растворы. Практически все радиоактивные препараты, применяемые в life science — это растворы соединений, меченных радиоактивными изотопами.

Для обозначения конкретного изотопа (в том числе и радиоактивного), согласно правилам номенклатуры, перед химическим символом элемента ставится надстрочечное число, обозначающее массу изотопа. Например, 14С — изотоп углерода с массой 14. В литературе допускается полное написание химического элемента и его массы через дефис, например, углерод-14. Обратите внимание, что пишется 14С, а произносится обычно С-14, т.е. для любого изотопа при написании первым всегда указывается массовое число изотопа над строкой, а затем символ химического элемента, а произносят наоборот: сначала элемент, затем масса изотопа.

Соединения, меченные радиоактивными изотопами, делят на две группы веществ. Во-первых, это конкретные химические соединения, у которых один атом (или несколько) заменён на атом радиоактивного изотопа того же элемента, т.е. химически такое соединение идентично "немеченому". Во-вторых, это молекулы соединений, модифицированные с помощью радиоактивного фрагмента (или дополнительного радиоактивного атома), которые отличаются от исходного немеченого соединения. К последнему случаю относятся всевозможные конъюгаты и модификации биологических макромолекул с неопределенным местоположением радиоактивного атома, например, молекула иммуноглобулина с введенным изотопом радиоактивного йода-125. Более подробно об этом ниже.

Для обозначения меченых соединений первой группы принято в обычное химическое наименование молекулы вставлять в квадратных скобках наименование изотопа, которым мечено соединение, и его место в молекуле перед названием части молекулы, содержащей меченый атом. В качестве примера ниже приведены наименования тимидин-5'-трифосфата, меченного различными радионуклидами и в разных положениях:

16.  [6-3H] тимидин-5' трифосфат

17.  [метил-3H] тимидин-5' трифосфат

18.  [U-3H] тимидин-5' трифосфат

19.  [5'-3H] тимидин-5' трифосфат

20.  [6,2',3'-3H] тимидин-5' трифосфат

21.  [2-14С] тимидин-5' трифосфат

22.  [U-14С] тимидин-5' трифосфат

23.  тимидин -5' [α-32P] трифосфат

24.  тимидин -5' [γ-32P] трифосфат

В примерах 3 и 7 место радиоактивного атома в молекуле обозначено U — это означает, что точное место радиоактивного атома неизвестно и, возможно, речь идет о равномерно меченой молекуле. Обычно такое бывает, если способ получения соединения заключался в выращивании микроорганизма на среде, обогащённой целевым изотопом, с последующим выделением нужного соединения из клеточного лизата. Подробнее методы получения меченых соединений обсуждаются в других разделах. В примерах 8 и 9 α и γ — это не тип радиоактивного распада, а местоположение радиоактивных атомов фосфора-32 в трифосфатной группе.

Для наименования второй группы соединений обозначение радионуклида в квадратных скобках выносят перед наименованием молекулы: [125I]-альбумин — альбумин, меченный йодом-125 или [метил -3H]-альбумин — альбумин, меченный тритием за счет метилирования молекулы [3H]-метильной группой йодистого метила.

4. Основные радионуклиды в life science

Список радиоактивных изотопов, которые используются в life science, вообще крайне ограничен самой природой. В состав органических соединений входят водород, углерод, кислород, азот, а также гораздо реже фосфор и сера. Следовательно, для получения немодифицированных меченых соединений круг возможных радионуклидов ограничен этими биогенными элементами. Их характеристики приведены в таблице 1.

Радионуклид Период полураспада Удельная активность 100% изотопа Тип распада Энергия(max) [MeV]
[mCi/mmol] [Бк/моль]

3H (тритий)

12.43 года 29.05

1,11x1015

β 0.0185

14C

5730 лет 0,062

2,3х1012

β 0.156

32P

14.3 дней 9104

0,33х1018

β 1.709

33P

25.4 дней 5138

0,19х1018

β 0.249

35S

87.4 дней 1491

0.5х1017

β 0.167

125I

60 дней 2167

0,8х1017

e.c. 0.25

К сожалению, радиоактивные изотопы кислорода и азота имеют совершенно неприемлемый для работы в life science период полураспада — от нескольких минут до миллисекунд. Такие ультра короткоживущие изотопы (УКЖ) уже применяются в медицине и технике, однако их использование в физико-химической биологии весьма проблематично.

Перечень радионуклидов, которые могут использоваться (и используются) для получения модифицированных молекул, может быть существенно расширен. Такие модифицированные молекулы часто используются не только в life science, но и в медицине (как для диагностики, так и для терапии). Весьма популярны для медико-биологических работ радионуклиды технеция, хрома и других. В этом материале не будут рассматриваться медицинские аспекты применения меченых соединений, поэтому сосредоточимся на использовании радионуклидов, приведенных в таблице 1.

Следует заметить, что все радионуклиды из таблицы 1 являются β-излучателями, кроме 125I, который "затесался" в этот список скорее в знак "особых заслуг", о которых ниже будет отдельная глава. На самом деле 125I для меченых соединений практически не используется, так как в живых организмах особого разнообразия молекул, содержащих йод, не наблюдается.

Вообще, "идеальный радионуклид" для life science должен отвечать следующим критериям:

25.  Элемент должен входить в состав всех органических молекул. Это понятно, так как делает возможным введение "меченого атома" в любую молекулу.

26.  Период полураспада "идеального радионуклида" 10÷100 дней. Это будет соответствовать теоретической молярной активности в диапазоне 1018÷1017 Бк/моль и сможет обеспечить высокую чувствительность метода.

27.  Чистый β-излучатель с максимальной энергией излучения не более 0,4 Мэв.Это позволяет сравнительно просто детектировать радионуклид и в тоже время сохраняет высокое разрешение методов, связанных с авторадиографической детекцией меченых продуктов.

К сожалению, ни один из приведенных в таблице радионуклидов не соответствует "идеалу". Тритий и углерод имеют слишком большой период полураспада, т.е. низкую молярную активность (особенно, углерод), а очень низкая энергия излучения трития сильно осложняет его детекцию и радиометрию. Весьма удобные ядерно-физические характеристики радиоактивных изотопов фосфора и серы не могут компенсировать ограниченность распространения этих элементов в органических молекулах. Поэтому выбор радионуклида, который предполагается использовать для исследования, приходится делать с учетом разных факторов, которые подробно разбираются ниже.

Все приведенные в таблице радионуклиды — искусственные, реакторные изотопы. В природе существуют радиоактивные изотопы 3H и 14C, но их содержание очень низкое, и препаративное выделение таких изотопов как сырья для синтеза меченых соединений является задачей с экономической точки зрения абсолютно разорительной. Кратко способы получения радионуклидов из таблицы 1 будут сообщены в соответствующих разделах.

5. Технические характеристики меченых соединений

Все препараты меченых соединений, которые используются в life science, имеют технические характеристики, подробно указанные фирмой-производителем в паспорте (сертификате) и кратко — на флаконе с препаратом. Ниже подробно разбираются термины технических характеристик и их значение.

5.1. Радионуклидная чистота [ % ]

Это характеристика радиоизотопной чистоты препарата. Для большинства радионуклидов, применяемых в life science, не очень важна. Примеси других радионуклидов в тритиевых или 35S соединениях отсутствуют. Однако, для соединений, меченных фосфором-33, это важнейшая характеристика, т.к. часто наличие примеси фосфора-32 более 2÷3% делает препарат фосфора-33 весьма сомнительным по качеству с точки зрения многих методик.

Иногда фирмы-производители искусственно "подогревают" интерес биохимиков к препаратам с очень высокой радионуклидной чистотой. Например, у йода много радиоактивных изотопов со своими индивидуальными ядерно-физическими характеристиками. Самый популярный в life science радиоизотоп йода — 125I. Фирма "Амершам" (Amersham) очень гордится тем, что предлагает исследователям 125I с очень высокой радионуклидной чистотой — содержание примесного 126I менее 0,01%. В то же время, практически для всех исследований в life science, включая радиоиммуноанализ, эта характеристика не является важной, и содержание других радиоактивных изотопов йода в целевом 125I может быть 0,1% и даже 1% без какого-либо ущерба для биологического осмысления полученных результатов.

5.2. Радиохимическая чистота [ % ]

Радиохимическая чистота (РХЧ) — это содержание основного вещества, которое определяется обычно хроматографически (ВЭЖХ или ТСХ) в двух разных системах (условиях). Как правило, РХЧ не ниже 95%. Для большинства исследователей в life science РХЧ начинает представлять интерес, когда они "угробили" эксперимент и пытаются понять почему это произошло.

5.3. Объемная активность [МБк/мл (мКи/мл)]

Иногда объемную активность называют концентрацией радиоактивности (radioactive concentration), что вполне отражает суть. На все производимые меченые соединения в паспорте (сертификате) обязательно указывается дата паспортизации и "reference data" — дата, на которую дается значение объемной активности. Большинство препаратов для life science, особенно соединения, меченные фосфором-32 или 33, имеют высокую объемную активность, и перепроверять (перемерять) заново величину, указанную в паспорте, просто жалко — слишком большой расход материала. Так что исследователи просто рассчитывают необходимую им для работы активность, исходя их данных паспорта с учетом периода полураспада используемого радионуклида. Естественно, что учет распада радионуклида проводится для короткоживущих радиоактивных изотопов: фосфора, серы и йода, а для трития, и тем более для 14С этого не делают.

5.4. Молярная активность [Бк/моль (Ки/ммоль)]

Молярная активность — это активность одного моля вещества, содержащего какой-то радионуклид. Устаревшие единицы измерения Ки/ммоль по-прежнему используются и даже чаще, чем современные Бк/моль. Это просто удобнее, т.к. величина высокой молярной активности (например, фосфора-32), выраженная в Бк/моль, часто вызывает у биологов панику. Сравните: 5000 Ки/ммоль равно 1,85х1017 Бк/моль.

В зарубежной научной литературе чаще используется термин "специфическая активность" (specific activity), который является синонимом молярной активности.

Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.