рефераты бесплатно

МЕНЮ


Курсовая работа: Борьба с солеотложениями путем периодической закачки ингибитора солеотложений в призабойную зону пласта

Курсовая работа: Борьба с солеотложениями путем периодической закачки ингибитора солеотложений в призабойную зону пласта

Министерство образования российской федерации

Университет

Кафедра разработки и эксплуатации нефтегазовых месторождений

Контрольная работа

По предмету: Борьба с осложнениями при добыче нефти

На тему: "Борьба с солеотложениями путем периодической закачки ингибитора солеотложений в призабойную зону пласта"

Уфа-2004

Содержание

Введение

1. Причины, условия образования солей в скважине

2. Методы предотвращения солеобразований

2.1 Выбор наиболее эффективного способа удаления солевых осадков

3. Метод периодической продавки ингибитора солеотложений в ПЗП

4. Выбор методов предотвращения образования отложений. Расчет потребного оборудования и материалов

4.1 Контроль за работой скважин с отложением солей

5. Контроль за выносом ингибитора отложения солей из скважины

Список использованной литературы


Введение

Процессы добычи нефти или газа часто сопровождаются нежелательным образованием отложений неорганических солей в призабойной зоне пласта (ПЗП), на стенках подземного оборудования скважин, в наземных коммуникациях системы сбора и подготовки нефти и газа. Для предупреждения образования отложений неорганических солей в скважинах применяются химические методы ингибиторной защиты поверхности нефтепромыслового оборудования. В промысловой практике борьбы с отложением солей наиболее широкое распространение получил метод периодической обработки ПЗП водным раствором ингибитора отложения солей. Сущность обработки заключается в периодической закачке водного раствора ингибитора отложения солей в ПЗП в виде оторочки продавочной жидкостью, адсорбции ингибитора на поверхности породы и постепенной десорбции его в процессе отбора жидкости из скважины. Вынос ингибитора добываемой жидкостью после продавки и пуска скважины в эксплуатацию до минимально необходимых концентраций, требуемых для ингибирования солей предопределяет период последствия и срок защиты нефтепромыслового оборудования от отложения солей и время между продавками ингибитора. Поэтому, чем продолжительнее вынос реагента (в достаточных для ингибирования количествах), тем эффективнее обработка скважины раствором ингибитора солей. Продолжительность выноса ингибитора в значительной мере зависит от величины адсорбции ингибитора солеотложений на поверхности породы пласта. При этом, чем больше адсорбция ингибирующего вещества и медленнее его десорбция с породы, тем продолжительнее и эффективнее предотвращения образования отложений солей.

Эффективность мер борьбы с солеотложением при добыче нефти зависит от комплексного подхода к решению данной проблемы. Необходимо знание физико-химических процессов и причин, вызывающих отложения солей в различных условиях залегания нефти, умение заранее прогнозировать, надежно контролировать и своевременно предотвращать возможное появление солевых осадков в процессе эксплуатации скважин. Особое внимание нужно уделять правильному выбору нужных методов борьбы с отложением солей, позволяющих добиться наибольшей их эффективности в конкретных промысловых условиях с учетом экономической целесообразности.


1. Причины, условия образования отложений солей в скважине

Интенсификация процессов добычи путем заводнения нефтяных пластов позволяет резко увеличить нефтедобычу, однако наблюдаемое при этом опреснение пластовых вод приводит, на ряде месторождений, к образованию гипсовых отложений.

Образование отложений неорганических солей происходит в скважинах, нефтепромысловом оборудовании, системе сбора, подготовки нефти и воды, а также в призабойной зоне пласта. По преимущественному содержанию в отложениях неорганических солей определенного вида выделяются две группы солей: карбонатные и сульфатные.

Самым распространенным видом отложений неорганических солей являются осадки, содержащие в основном сульфат кальция (60-80 %) и карбонаты кальция и магния (5-16 %). Влага и углеводородные соединения составляют 7-27 %. При определенных условиях каждая молекула сульфата кальция связывает две молекулы воды, в результате чего образуются кристаллы гипса, поэтому такие осадки называют гипсовыми отложениями. Если при этом в составе осадков содержится более 15 % твердых и тяжелых углеводородных соединений нефти, то они классифицируются как гипсоуглеводородные отложения. В составе отложений в виде примесей присутствуют до 0,5-4,0 % окислов железа и до 0,5-3,0 % кремнезема, наличие которых объясняется коррозией оборудования и выносом песчинок жидкостью в процессе эксплуатации скважины.

Изучение структуры позволяет выделить три вида осадков.

1. Плотные микро и мелкокристаллические осадки. В поперечном сечении таких осадков не удается выделить отдельные слои, поскольку отложения представлены сравнительно однородными кристаллами длиной до 5 мм с равномерным включением твердых углеводородов. В ряде случаев такие осадки имеют накипеобразный характер.

2. Плотные осадки с преобладанием кристаллов гипса средних размеров 5…12 мм с включением твердых и жидких углеводородов. При поперечном срезе образца отложений хорошо различим слой мелкозернистого осадка толщиной 3…5 мм в пристенной части, затем прослеживается слой среднекристаллического осадка призматического или игольчатого строения. В этом слое преобладают кристаллы длиной 5…12 мм. В наружном слое пространство между средними и крупными кристаллами заполнено более мелкими.

3. Плотные крупнокристаллические осадки. Крупные игольчатые кристаллы гипса образуют каркас. Между крупными кристаллами гипса длиной 12…25 мм находятся более мелкие кристаллы солей и углеводородные соединения. В некоторых случаях в насосно-компрессорных трубах (НКТ) нет сплошных отложений гипса, а осадок представлен в виде одиночных друз кристаллов длиной 20… 27 мм с включением у их оснований мелких.

Выпадение любого вещества в осадок происходит в том случае, если концентрация этого вещества или иона в растворе превышает равновесную (или предельную) концентрацию, т.е. когда выполняется неравенство:

Сi > Cip,

где Ci - концентрация соединения или иона, потенциально способного к выпадению в осадок;

Сip - равновесная при данных условиях концентрация (предельная растворимость).

Это неравенство смещается в сторону выпадения осадка, либо за счет увеличения левой части (возрастания фактической концентрации), либо за счет уменьшения правой части (снижения растворимости). Первое из этих условий возникает, как правило, при смешивании вод разного состава, несовместимых друг с другом. Вторым условием выпадения осадков служит перенасыщение вод в результате изменения температуры, давления, выделения газов, когда в исходном растворе снижается величина равновесной концентрации.

При разработке нефтяных месторождений Урало-Поволжья с применением заводнения происходят гидрохимические изменения, накладывающиеся на природные изменения вод. С закачкой воды в нефтяном пласте образуется сложная многокомпонентная система: закачиваемая вода - пластовая вода - погребенная вода - нефть с растворенным газом - породы пласта. В результате сложных внутрипластовых процессов в этой системе происходит увеличение концентраций сульфатных ионов в попутно добываемых водах. Поэтому все гипотезы о причинах отложений гипса сводятся к объяснению причин увеличения концентрации сульфат - ионов в связи с закачкой пресной или сточной воды. Кроме того, при извлечении нефти с попутной водой, перенасыщенной сульфатом кальция или близкой к предельному насыщению, и изменении термодинамических условий по стволу скважины происходит уменьшение равновесной концентрации сульфата кальция в воде, которое приводит к выпадению гипса в скважинах.

Обобщение литературных данных позволяет выделить следующие основные причины выпадения гипса в скважинах:

1) выщелачивание гипса и ангидрита, содержащегося в скелете пласта, закачиваемой пресной водой;

2) обогащение попутно добываемой воды сульфатными ионами за счет погребенных вод;

3) приток чуждых сульфатных вод из-за некачественного цементирования или негерметичности обсадной колонны и смешение их в скважине с пластовыми хлоркальциевыми водами;

4) обогащение попутных вод за счет окисления до сульфатов сульфидов, имеющихся в пласте, и серосодержащихся компонентов нефти кислородом воздуха, вносимым с закачиваемой водой;

5) поддержание пластового давления путем закачки несовместимых с пластовыми пресных или сточных вод повышенной сульфатности;

6) окисление соединений серы, находящихся в пласте, до сульфатов серобактериями и тиобактериями;

7) изменение термодинамических условий газо-водо-нефтяной смеси при подъеме жидкости из скважины.

Отмечается, что отложения гипса в скважинах чаще происходит по нескольким причинам, обусловленным геологическим строением, системой разработки залежей и режимов эксплуатации скважин.

Исследование кернов Таймурзинского месторождения показывает, что в составе терригенных продуктивных пород нижнего карбона содержится ангидрит, гипс, пирит. Пресная вода насыщается за счет растворения ангидрита и гипса и десорбции сульфат-ионов с поверхности породы. Насыщение сульфатами пресных вод происходит также за счет внутрипластового окисления сульфидов кислородом воздуха, вносимым с закачиваемой водой. Содержание пирита в отдельных исследованных кернах достигает 10 %, а в нагнетаемой в пласт воде содержится в значительном количестве растворенный кислород, происходит образование хорошо растворимого в воде сульфата железа по следующей реакции:

2FeS2 + 7O2 + 2H2O = 2 FeSO4 + 2H2SO4

Образующаяся при этом серная кислота воздействует на присутствующие в породе карбонаты или вступает во взаимодействие с хлорокальциевыми пластовыми водами с образованием гипса.

Поступление в добывающие скважины высокосульфатных вод может быть не только из продуктивных пластов, но и из выше - и нижележащих водоносных горизонтов по негерметичности цементного кольца за эксплуатационной колонной, либо через негерметичные резьбовые соединения в обсадных трубах. Эта причина выпадения солей, как правило, быстро выявляется и не вызывает массовых отложений. На Таймурзинском месторождении обнаружились единичные случаи отложения солей сульфата и карбоната кальция, это объясняются поступлением высокосульфатных артизианских вод через негерметичности в обсадной колонне.

Также на увеличение сульфатности попутно-добываемых вод отражается и состав закачиваемых вод, так как для поддержания пластового давления (ППД) используются пресные воды повышенной сульфатности р. Белой. Кроме того, для повторной закачки в пласт используются сточные воды из установок подготовки нефти, в которых они обогащаются сульфатами за счет деэмульгаторов.

Образование гипсовых отложений будет происходить в том случае, если концентрация сульфата кальция в растворе превысит при данных условиях, равновесную. Такое условие возникает при смешении пластовой хлоркальциевой воды с пресной, насыщенной сульфатами в процессе продвижениям ее по пласту. Воды, поступающие из различных пропластков, существенно отличаются по солевому составу. Одни из них больше насыщенны сульфатами, другие, в частности пластовые, насыщенны ионами кальция. В результате смешения таких вод в скважине раствор оказывается перенасыщенным по отношению к сульфату кальция, избыток которого выпадает на оборудовании в виде твердого осадка.

На интенсивность образования гипсовых отложений влияет изменение величины равновесной концентрации (предельной растворимости) сульфата кальция. Это условие возникает при изменении температуры и давления в насыщенных сульфатных растворах при подъеме жидкости из скважины. По обобщенным данным Н.И.Даниловой, перепады давления, которые испытывают растворы при поступлении на забои скважин, оказывает превалирующие влияние на сульфатное равновесие в этих растворах и уменьшают предельную растворимость сульфата кальция в воде. Изменение температурного режима растворов оказывает существенное влияние на растворимость гипса в воде только на поверхностях теплообмена установок по подготовке обводненной нефти.

Для оценки влияния давления на предельную растворимость сульфата кальция в хлоркальциевых водах в УГНТУ были проведены лабораторные эксперименты и было установлено, что величина предельной растворимости сульфата кальция зависит прежде от химического состава раствора. Добавление в воду хлористого кальция ведет к снижению предельной растворимости из-за наличия одноименных ионов кальция в CaCl2 и CaSO4. В сложных водных растворах при малых концентрациях хлористого кальция и значительных концентрациях хлористого натрия предельная растворимость сульфата кальция выше, чем в дистиллированной воде. Эти же закономерности присущи и пластовым водам.

Изменение давления в водных растворах оказывает влияние на величину предельной растворимости сульфата кальция. Это влияние выражается в увеличении предельной растворимости сульфата кальция пропорционально давлению. Уменьшение давления от 20 до 2 МПа приводит к снижению растворимости сульфата кальция на 16-18 %. Это имеет практическое значение. В условиях скважин большие депрессии на забое при ее эксплуатации могут явиться причиной выпадения и отложения гипса, если попутные воды насыщены или близки к насыщению сульфатом кальция.

Также замечено, что увеличение шероховатости стенок оборудования, выделение газа из добываемой жидкости, резкое уменьшение скорости потока способствует ускоренному накоплению отложений.

Большинство авторов сходится во мнении, что изменение термодинамических условий в процессе добычи жидкости является основным фактором, влияющим на выпадения гипса. Зависимость гипсообразования от темпераратуры исследовалась и для насыщенного, по отношению к кальций- и сульфат-ионам, раствора (0,43 г/100 г Ca2+, 0,53 г/100 г SO42-). Установлено, что с увеличением температуры резко сокращается время начала выпадения гипса из раствора. При температуре 60-35 оС гипс выпадает через 1 -3 минуты, при 5оС гипс начинает выпадать только через 12 суток. В случае обводненного раствора ( 0,55 г/100 г SO42- и 0,12 г/100 г Са2+ ) с уменьшением температуры время начала выпадения гипса может увеличиться до бесконечности, то есть при концентрации сульфат -ионов и ионов кальция, близкой к критической, температура может являться главным фактором, определяющим выпадения гипса. Снижение температуры при разработке продуктивных пластов не способствует, а ухудшает условия выпадения гипса даже из насыщенного раствора. Это подтверждается промысловыми наблюдениями: в зимнее время трубы наземных коммуникаций реже забиваются гипсом по сравнению с летним периодом.

Известно, что растворимость гипса в воде имеет максимальные значения 2,05-2,11 г/л в пределах температур 20-50 оС. При температурах выше и ниже указанных, его растворимость резко снижается. Как показывают промысловые наблюдения, в первую очередь отложения гипса появляются на электродвигателе и на рабочих колесах насосов. Это вероятнее всего объясняется тем, что при работе электродвигателя насоса наблюдается повышение его температуры.

Растворимость гипса существенно увеличивается в растворах солей, не имеющих с сульфатом кальция общих ионов. Прослеживается тесная зависимость растворимости от состава растворенной соли и общей минерализации раствора: с повышением минерализации растворимость увеличивается, достигает максимума, после чего начинает падать в следствии проявления высаливающего эффекта. Максимальная растворимость гипса в растворах поваренной соли при температуре 25 оС и концентрации NaCl 139 г/л равна 7,3 г/л, то есть в три с половиной раза превышает растворимость в дистиллированной воде при той же температуре. Однако даже незначительные добавки в раствор соли, имеющей общий ион с сульфатом кальция, резко снижает растворимость гипса. Десятипроцентное содержание хлористого кальция в растворе снижает растворимость гипса более чем в три раза по сравнению с растворимостью его в пресной воде. Зависимость растворимости гипса от давления сравнительно невелика. В растворах NaCl с минерализацией 80-200 г/л повышение давления на 10-20 МПа приводит к увеличению растворимости гипса всего на 7-10 %. При минерализации менее 80 и более 200 г/л влияние повышения давления на 20-40 МПа совершенно незначительно. Только в интервале давления 50-100 МПа растворимость сульфата кальция резко возрастает. Подводя итог изучения вопроса о причинах и условиях образования гипса при нефтедобычи можно представить следующую схему формирования состава попутно - добываемых вод с последующим выпадением из них гипсовых осадков: закачиваемые бессульфатные воды в результате взаимодействия с породой нефтевмещающего коллектора, пластовой водой, нефтью и погребенными водами обогащаются сульфат - ионами. Смешение этих вод с пластовыми водами хлоркальциевого типа приводит к образованию попутно - добываемых смешанных вод, представляющих собой насыщенные растворы сульфата кальция (гипса). К подобному же результату приводит и смешение двух пластовых вод, одна из которых содержит значительное количество иона кальция, а другая сульфат - иона. Кроме того, если закачиваемая вода заведомо обогащена сульфат - ионами, то при смешении ее с пластовой водой хлоркальциевого типа образуются также насыщенные растворы сульфата кальция. Выпадение из таких растворов гипса происходит под влиянием изменения температуры, давления, концентрации других солей, в результате действия активных органических соединений.

Нужно заметить, что выпадение гипса происходит тем интенсивнее, чем больше центров кристаллизации в растворе. При добыче нефти центрами могут быть механические частицы, выносимые из скважины потоком жидкости; пузырьки газа, выделяющиеся из нефти; шероховатые стенки труб и насосного оборудования.


2. Методы предотвращения солеобразований

Для удаления солей применяют различные способы в зависимости от характера солевых отложений, места отложения неорганических солей и их состава. Для ликвидации отложений солей в обсадной колонне применяют механический способ – разбуривание солевых пробок с последующей дополнительной перфорацией в интервале продуктивного пласта.

На промыслах России и за рубежом широко используют химические способы удаления солей. Нередко различные способы используются одновременно для обеспечения более полного удаления солей.

Отметим, что химические способы применяют для удаления гипса и карбоната кальция. Отложения сульфата бария удаляются, как правило, механическим способом. Поэтому в каждом случае, в зависимости от состава солевых отложений, необходимо выбирать соответствующие методы и реагенты, чтобы обеспечить наибольшую эффективность проводимых обработок.

Для удаления гипса наибольшее распространение получили следующие реагенты: водный раствор едкого натра (каустической соды), водные растворы соляной кислоты с добавкой хлористого натрия или хлористого аммония, водные растворы углекислого натрия (кальцинированной соды).

На скважинах НГДУ "Чекмагушнефть" наблюдалось отложение солей в призабойной зоне. Это наиболее ярко проявилось при испытании ингибиторов, в тщательно оборудованных для постоянной подачи ингибитора скважинах. Хвостовики были спущены до интервала перфорации, ингибитор подавали постоянно с помощью дозировочных насосов, работа которых находилась под постоянным наблюдением. Тем не менее через 3-4 месяца эксплуатации дебит скважин начал снижаться. Подъем оборудования и его ревизия показали полное отсутствие отложений солей на поверхности оборудования. После проведения обработок призабойной зоны продуктивность скважин была восстановлена.

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.