рефераты бесплатно

МЕНЮ


Контрольная работа: Технологический процесс изготовления входной двери

Контрольная работа: Технологический процесс изготовления входной двери

Технологический процесс изготовления входной двери


Содержание

Введение

1. Организация рабочего места

2. Выбор источника питания

3. Характеристика стали

4. Выбор электродов

5. Режим сварки

6. Технология изготовления конструкции

6.1 Сборка и сварка конструкции

6.2 Дефекты и их устранение

6.3 Техника безопасности

7. Расчет стоимости изготовления

Список литературы


Введение

Технологический процесс изготовления металлической двери - это совокупность последовательно выполняемых операций, образующих вместе единый процесс преобразования исходных материалов в нужный стальной дверной блок. Разработанный технологический процесс изготовления металлической двери отражают в специальном документе: технологической карте, а для единичного или мелкосерийного производства в маршрутной карте, где приводят лишь перечень операций и указывают последовательность их выполнения. Производители металлических дверей сами определяют, какой вариант технологического документа им выбрать.

Документом, входящим в комплект технической документации на металлические двери, в котором указываются комплекс технических требований к ним, правила приёмки и поставки, методы контроля, условия эксплуатации, транспортирования и хранения являются технические условия (ТУ). ТУ составляются в соответствии с ГОСТ 31173-2003 и имеют ограниченный срок действия.

Производство стального блока двери, конечно, не является единственным этапом в изготовлении входных дверей. Внутри стальные двери не пустые, иначе это были бы не двери, а весьма уязвимые конструкции, хоть и изготовленные из стали, но представляющиеся опытному взломщику незамысловатой жестяной коробочкой без замочка. А на входной двери должен стоять не замочек, а надёжный замок и лучше два с различными типами запирающего механизма. К тому же, входные двери не пустотелы, т.к. помимо надёжной защиты от злоумышленников должны предоставлять и защиту от внешнего шума и постоянных температурных колебаний.


1. Организация рабочего места

В зависимости от характера работы сварку можно вести, находясь на одном месте или периодически передвигаясь по рабочей площадке. Поэтому рабочее место сварщика может быть как мобильным, так и постоянным. Независимо от этого существует строго определенный набор необходимых приспособлений и инструментов. Среди них выделяют: источник электропитания, сварочный трансформатор, сварочные провода, держатель электрода, защитный щиток для лица, брезентовая защитная одежда, оградительные щиты, средства пожаротушения, необходимые инструменты, асбестовый лист. Если сварочные работы ведутся в кабине, то стены кабины лучше окрасить в светло-серый цвет. Такой тип окраски способствует лучшему поглощению ультрафиолетовых лучей. Кроме того, в кабине должно быть хорошее освещение и вентиляция. Полы по требованиям противопожарной безопасности должны быть из кирпича, бетона или цемента. Размеры кабины — 2 х 2,5 м. Ее стенки изготавливают из тонкого металла, фанеры, брезента. И фанера и брезент пропитываются огнестойким составом. Рабочий стол сварщика не должен превышать высоту 0,6-0,7 м. Материал столешницы — толстая листовая сталь. Фибровые маски и щитки защищают глаза и лицо сварщика от вредных излучений. Внутренняя сторона корпусов щитков и масок должна иметь матовую гладкую поверхность черного цвета. Защиту от излучений обеспечивают и темно-зеленые светофильтры (тип С). Если сварочные работы выполняются покрытыми электродами, то лучше выбирать следующие светофильтры: при токе 100 А — светофильтр С 5, 200 А — С 6, 300 А — С 7, 400 А — С 8, 500-600 А — С 9. Если сварка проводится в двуокиси углерода при токе 50-100 А, то применяют светофильтр С 1, 100-150 А — С 2, 150-250 А — С 3, 250-300 А — С 4, 300-400 А — С 5. Электродержатели нужны для закрепления электрода и подвода к нему тока при ручной дуговой сварке. Различают электродержатели пассатижного, винтового, пружинного, рычажного и других типов. Электродержатели позволяют закреплять электрод в одном из трех положений: под углом 0, 60, 90° относительно продольной оси рукоятки.


2. Выбор источника питания

Для сварки на переменном токе основным источником питания являются сварочные трансформаторы. Их основными функциями являются питание сварочной дуги и регулирование сварочного тока. Такие трансформаторы делят на две группы: трансформаторы с нормальным магнитным рассеянием и дополнительной реактивной катушкой-дросселем и трансформаторы с повышенным магнитным рассеянием. Применяют их при ручной и автоматической сварке под флюсом. Упрощенно схему работы трансформатора можно представить так: на стальном сердечнике находятся первичная и вторичная обмотки. Ток из сети, проходя через первичную обмотку, намагничивает сердечник, образуя тем самым переменный магнитный поток, который индуктирует ток во вторичной обмотке. Первичная обмотка сварочного трансформатора ТСК-500 неподвижна, в то время как вторичная передвигается по сердечнику, регулируя сварочный ток. Обмотка состоит из двух катушек, которые закреплены на двух стержнях магнитопровода. Она находится в нижней части сердечника. На определенном расстоянии от первичной расположена вторичная обмотка. Она также состоит из двух катушек, соединенных параллельно. Обмотка перемещается по сердечнику с помощью винта и рукоятки, находящейся на крышке кожуха трансформатора. Вторичная обмотка жестко соединена с плитой. Изменение расстояния между обмотками регулирует сварочный ток. Если рукоятку вращать по часовой стрелке, то вторичная обмотка приближается к первичной, уменьшая индуктивное сопротивление. Наблюдается возрастание сварочного тока. Вращение рукоятки против часовой стрелки увеличивает расстояние между обмотками. Это способствует возрастанию индуктивного сопротивления и уменьшению сварочного тока. С вторичной обмотки ток поступает на выход. Сварочный ток можно регулировать в пределах от 165 до 650 А. Сварочные генераторы постоянного тока обеспечивают устойчивость горения сварочной дуги, так как изменение величины сварочного тока влечет за собой уменьшение или увеличение магнитного потока. Питание электродуги происходит за счет съема напряжения с зажимов угольных щеток на коллекторе. Движение сварочного агрегата происходит при помощи двигателя внутреннего сгорания. В сварочных преобразователях ту же функцию выполняет электродвигатель. Соединение сварочного трансформатора и блока выпрямителя образует сварочный выпрямитель. Иногда для получения падающей характеристики сюда подключают дроссель. Принцип действия выпрямителей основан на свойстве полупроводников проводить ток только в одном направлении. Наибольшее распространение получили выпрямители с кремниевыми и селеновыми полупроводниковыми элементами. В сварочных выпрямителях применяют трехфазную мостовую схему выпрямления. При такой схеме возникает меньшая импульсация выпрямленного напряжения, и питающая сеть переменного тока получает более равномерную загрузку. Выпрямители имеют высокие динамические свойства из-за меньшей электромагнитной инерции. Здесь ток и напряжение при переходных процессах меняются почти мгновенно. Здесь отсутствуют вращающиеся части, что делает установку надежной и простой в эксплуатации. Выпрямители с падающими внешними характеристиками используются как для ручной дуговой сварки и резки, так и для автоматизированной. Существует несколько типов выпрямителей. Выпрямитель типа ВДГ используется при механизированной сварке в углекислом газе. Переключение режимов сварки дистанционное. Выпрямители типа ВДУ (универсальные сварочные) применяются для однопостовой механизированной сварки под флюсом и в углекислом газе. Обратная связь по току используется для получения падающих внешних характеристик. Магнитный усилитель применяется в качестве датчика. Тип ВДГУ можно использовать для ручной дуговой сварки электродами. Выпрямители типа ВДГИ предназначены для импульсно-дуговой сварки плавящимся электродом в защитных газах.

Выпрямители типа ВКСМ, В ДМ, В ДУМ (многопостовые сварочные) рассчитаны на номинальные длительные токи 1000-5000 А. По номинальной силе тока одного поста и коэффициенту одновременности нагрузки (0,6-0,7), устанавливается число постов. Например, выпрямитель ВДМ-1601УЗ предназначен для питания семи и девяти сварочных постов ручной дуговой сварки. Имеет жесткие внешние характеристики. Другой выпрямитель — ВДУМ-4Х401УЗ — предназначен для питания четырех сварочных постов при механизированной сварке в углекислом газе и ручной дуговой сварке. Выпрямитель здесь тиристорный, имеющий жесткие и падающие внешние характеристики. Во время эксплуатации выпрямитель должен подвергаться планово-предупредительному контролю. Один раз в два месяца необходимо очищать кремниевые вентили от пыли и грязи сжатым воздухом и тщательно проверять затяжку контактных соединений. У нового выпрямителя следует проверить сопротивление изоляции относительно корпуса. Сопротивление изоляции первичного контура должно быть не ниже 1 мОм, а вторичного — не ниже 0,5 мОм. Если сопротивление снижено, то выпрямитель просушивают внешним нагревом или обдувом теплым воздухом. Выпрямители, хранившиеся более одного года, следует включать на 20 минут на напряжение, равное половине номинального значения, а затем на 4 часа — на номинальное переменное напряжение без нагрузки.


3. Характеристика стали

·  Плотность — 7700-7900 кг/м³.

·  Удельный вес — 75537-77499 н/м³ (7700-7900 кгс/м³ в системе МКГСС).

·  Удельная теплоемкость при 20 °C — 462 Дж/(кг·°C) (110 кал/(кг·°C)).

·  Температура плавления — 1450—1520 °C.

·  Удельная теплота плавления — 84 кДж/кг (20 ккал/кг).

·  Коэффициент теплопроводности — 39 ккал/(м·час·°C) (45,5 Вт/(м·К)) [источникнеуказан79дней].

·  Коэффициент линейного теплового расширения при температуре около 20 °C:

·  сталь Ст3 (марка 20) — 11,9\cdot10^-.^6(1/град);

·  сталь нержавеющая — 11,0\cdot10^-.^6(1/град).

·  Предел прочности стали при растяжении:

·  сталь для конструкций — 38-42 (кГ/мм²);

·  сталь кремнехромомарганцовистая — 155 (кГ/мм²);

·  сталь машиностроительная (углеродистая) — 32-80 (кГ/мм²);

·  сталь рельсовая — 70-80 (кГ/мм²);

Разновидности некоторых сталей

Марки стали ↓

Термообработка ↓

Твердость (сердцевина-поверхность) ↓

35 нормализация 163—192 HB
40 улучшение 192—228 HB
45 нормализация 179—207 HB
45 улучшение 235—262 HB
40Х улучшение 235—262 HB
40Х улучшение+закалка токами выс. частоты 45-50 HRC; 269—302 HB
40ХН улучшение 235—262 HB
40ХН улучшение+закалка токами выс. частоты 48-53 HRC; 269—302 HB
35ХМ улучшение 235—262 HB
35ХМ улучшение+закалка токами выс. частоты 48-53 HRC; 269—302 HB
35Л нормализация 163—207 HB
40Л нормализация 147 HB
45Л улучшение 207—235 HB
40ГЛ улучшение 235—262 HB

4. Выбор электродов

При дуговой сварке плавлением применяют плавящиеся электроды, выполненные из холоднотянутой калиброванной или горячекатаной проволоки диаметром 0,3-12 мм, или порошковой проволоки. В качестве электродов используют также электродные ленты и пластины. Электроды классифицируют по материалу, назначению для сварки определенных сталей, по толщине покрытия, нанесенного на стержень, видам покрытия, характеру шлака, образующегося при расплавлении, техническим свойствам металла шва и пр. На все электроды наносится определенный состав — покрытие. Общее назначение электродных покрытий — обеспечение стабильности горения сварочной дуги и получение металла шва с заранее заданными свойствами. Наиболее важными свойствами являются пластичность, прочность, ударная вязкость, стойкость против коррозии. Покрытие выполняет множество важных функций. Во-первых, это газовая защита зоны сварки и расплавленного металла, которая образуется при сгорании газообразующих веществ. Она предохраняет расплавленный металл от воздействия кислорода и азота. Такие вещества вводятся в покрытие в виде древесной муки, целлюлозы, хлопчатобумажной ткани. Во-вторых, раскисление металла сварочной ванны элементами, обладающими большим родством с кислородом, чем железо. К таким элементам относятся марганец, титан, молибден, хром, кремний, алюминий, графит. Раскислители входят в покрытие не в чистом виде, а в виде ферросплавов. В-третьих, шлаковая защита. Шлаковое покрытие уменьшает скорость охлаждения и затвердения металла шва, способствуя тем самым выходу газовых и неметаллических включений. Шлакообразующие компоненты покрытий представляют собой титановые и марганцевые руды, каолин, мрамор, кварцевый песок, доломит, полевой шпат и др. В-четвертых, легирование металла шва для придания ему специальных свойств (повышение механических свойств, износостойкости, жаростойкости, сопротивления коррозии). В качестве легирующих компонентов используются хром, никель, молибден, вольфрам, марганец, титан. Кроме того, для повышения производительности сварки в электродные покрытия вводят железный порошок. Такой порошок облегчает повторное зажигание дуги, уменьшает скорость охлаждения наплавленного металла, что благоприятно сказывается на сварке в условиях низких температур. Содержание порошка может достигать до 60% массы покрытия. Для закрепления покрытия на стержне электрода используют связующие компоненты, такие как жидкое стекло. Для придания покрытию лучших пластических свойств в него вводят формующие добавки, такие как бетонит, каолин, декстрин, слюда и пр. В зависимости от свариваемых материалов все электроды делятся на следующие группы: Л — для сварки легированных конструкционных сталей с временным сопротивлением разрыву свыше 600 МПа — пять типов (Э70, Э85, Э100, Э125, Э150); У — для сварки углеродистых и низкоуглеродистых конструкционных сталей; В — для сварки высоколегированных сталей с особыми свойствами; Т — для сварки легированных теплоустойчивых сталей — 9 типов; Н — для наплавки поверхностных слоев с особыми свойствами — 44 типа. Гарантируемый предел прочности металла шва обозначается в марке электродов цифрами. Например, название электрода, обозначенное Э42, говорит о том, что он предназначен для дуговой сварки; минимальный предел прочности металла шва — 420 МПа.


5. Режим сварки

Если ведется ручная дуговая сварка, то ее выполняют в 2-3 слоя, так как многослойная сварка обеспечивает глубокий провар корня и повышает плотность сварного соединения. Такой способ применяют с поворотом и без поворота свариваемых стыков. При сварке поворотных стыков применяется следующий способ: первым слоем заваривают участки от точки 1 до точки 2 и от точки 4 до точки 3 на всех стыках труб. После этого секцию поворачивают на 90 градусов и заваривают участки от точки 4 до точки 2 и от точки 3 до точки 2. Чтобы не образовался прожог металла, рекомендуется производить сварку первого слоя электродами диаметром 4 мм при сварочном токе 120-140 А. Наварку слоев следует выполнять в одном направлении с постепенным поворотом свариваемой секции. Если сваривается неповоротный стык, то сварку ведут при соединении секций в одну плеть и окончательном монтаже трубопровода. Порядок наложения сварных швов следующий: первый слой — швы 1,2,3 завариваются снизу вверх; последующие (наружная окружность — швы 1, 2, 3) — сверху вниз. Замки, или замыкающие участки в смежных слоях шва, должны отстоять друг от друга на расстоянии примерно 60-100 мм; в потолочной части шва удобно заканчивать сварку на расстоянии 50-70 мм от нижней точки трубы. Если сварку неповоротных стыков выполнить невозможно, то применяют комбинированный способ. При этом способе сваривают стык со вставкой 2, при этом нижняя часть шва 1 заваривается с внутренней стороны; верхняя часть шва 3 заваривается с наружной стороны. Тип применяемых электродов тот же, что и при сварке поворотных стыков. Если ведется прокладка магистральных трубопроводов, то ручную сварку ведут только при наложении первого слоя шва.

Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.