рефераты бесплатно

МЕНЮ


Гаметициды и их применение в селекции

различия в толщине и составе мембраны кутикулы. Однако основные структурные

компоненты кутикулы характерны для всех растений. Кут.ин представляет собой

полимолекулярную сеть гид-рокси-карбокоильных кислот с простыми и сложными

эфирными связями. С кутанным матриксом связаны полисахар.иды и кутикулярный

и этикулярный воск, богатый алканами. Так как в кутикуле имеются полярные и

неполярные группы, она обладает как гидрофильными, так и липофильными

свойствами [45].

Одним из важных факторов, определяющих степень эффективности действия

гаметоцида, является зависимость его. активности от климатических и

погодных условий, которые необходимо учитывать при разработке доз и

концентраций для конкретных возделываемых культур и представляющих их

сортов. Однако до сих пор не удалось установить четких взаимосвязей между

влиянием условий среды и проницаемостью листовой поверхности, хотя развитие

кутикулы коррели-

23

рует с продолжительностью светового периода, инсоляцией, влажностью почвы и

воздуха, температурой [81].

Температурный режим является одним ,из самых определяющих условий

развития кутикулы и распределения наносимого препарата [83]. При нанесении

препарата в разные фазы органогенеза следует учитывать, что с возрастом

листа снижается абсорбционная способность. Р. М. Nelson и R. К. Reid fl05]

доказали, что метиловые эфиры жирных кислот — Lg-ii вызывают гибель

меристематических тканей, но не разрушают более зрелые ткани. Механизм

такой селективности основан на способности кутикулы действовать как барьер

проницаемости по отношению к наносимому препарату. Это было подтверждено

разрушением кутикулы до нанесения эмульсии (4%-ный метил-деканоат+0,1%-ный

твин 20). Гибель ткани (ожоги) — результат нарушения структуры мембран.

Авторы считают, что твин снижает проницаемость кутикулы и плохо проникает

через кутикулу зрелых листьев.

Поверхностное применение гаметоцидных препаратов с использованием

радиоактивной метки показало, что при нанесении на лист гаметоциды быстро

транслокализуются в репродуктивные органы. Нанесение химикатов на базальную

часть листа обеспечивало более полное поглощение препарата, чем на

апикальную часть. В репродуктивных тканях активно аккумулировались

гаметоциды.

Наиболее подробно абсорбционные особенности химических препаратов изучали

на гербицидах. Детально были исследованы ответные реакции растений двух

сортов капусты, характеризующиеся различной чувствительностью к нитрофе-ну

(2,4-дихлорфенил-р-нитрофениловый эфир) [113]. У обоих сортов не было

обнаружено заметных различий в скорости прорастания семян, росте растений,

плотности устьиц листьев и в транслокализации меченого '^С гербицида.

Однако у растений устойчивого к препарату сорта листья обладали более

восковидной поверхностью, что позволило сделать вывод о корреляции между

блокированием абсорбции и содержанием воска в кутикуле.

Проникновение соединений в ткани листа обусловлено и другими факторами,

характеризующими применяемый раствор: температурой, концентрацией,

продолжительностью времени его соприкосновения с поверхностью растений,

поверхностным натяжением и др. Проникновение веществ возрастает

пропорционально времени и концентрации. Поступление соединения из раствора

в ткани листа осуществляется до тех пор, пока его доза на поверхности листа

или под кутикулой не станет предельной. В полевых условиях эффективность

действия и поступление нанесенного препарата зависят от

24

сложного взаимодействия климатических факторов и внутренних физиологических

тканевых параметров (водный дефицит, значение рН в клетке, концентрация

цнтоплазматиче-ского сока и т. д.).

В ткани листа легче проникают недиссоциирующие молекулы. Повышение

температуры от 10 до 30° увеличивает проницаемость кутикулы и мембран, за

исключением промежутка между 15" и 25°, в пределах которого поступление

носит относительно стабильный характер. Если опрыскивание проводят под

давлением, растворы проникают в основном через устьица, однако вещества с

поверхностным натяжением, близким к поверхностному натяжению воды (70

дин/см2), через устьица не проникают ,[54].

При селективности абсорбции у наиболее распространенных видов

сельскохозяйственных культур по отношению к 2,4Д (который обладает и

гаметоцидными свойствами) установлено, что толщина кутикулы является

решающим фактором, а толщина и структура оболочек эпидермальных клеток не

имеют определяющего значения для степени абсорбции препарата. При этом

абсорбционные характеристики старых и молодых листьев значительно

отличались и в обоих случаях зависели от химических свойств препарата.

На проростках конских бобов поглощение листьями меченого по углероду

'^'^^-хлор-о-толил) окиси] бутиловой кислоты было одинаковым для листьев

всех возрастов. Однако замена бутиловой кислоты на радикал уксусной кислоты

вызывала различия в поглощении молодыми (скорее) и более зрелыми

(медленнее) листьями [92]. Таким образом, даже слегка измененная

конфигурация молекулы может в значительной степени повлиять на ее

способность проникать через мембраны [126].

Пока не установлено четкой взаимосвязи между химическими, физическими

характеристиками и проницаемостью препарата в системе клеток.

С помощью энзиматически изолированной кутикулы листьев была создана шкала

проницаемости кутикулы по отношению к ряду алифатических спиртов и их

амидов [138]. Соединения выбирали по способности растворять липиды и по

моле< кулярньш весам. Результаты опытов показали, что кутикула

функционирует в основном как липоидная мембрана, позволяющая веществам

проникать в клетку пассивной диффузией согласно их растворимости в липидах.

Модель молекулярного сита больше подходит для молекул малых размеров.

Коэффициенты проницаемости алифатических спиртов располагаются от этанола к

пентанолу: этанол2,3- и 3,5-ди-

хлорфеноксиуксусная >2-хлорфенокоиуксусная>фенокс.иук-сусная кислота. Чем

больше полярность феноксиуксусной кислоты, тем легче она проникает через

мембраны [53]. Хлорирование увеличивает растворение феноксиуксусной кислоты

в л.ипидах и тем самым способствует ее проникновению через кутикулу [127].

Хлорирование бензойной кислоты, наоборот, снижает степень проникновения

через кутикулу, и шкала ее проницаемости располагается в нисходящем

порядке: 2-хлорбензойная кислота, 2,4- и 2,5-дихлорбензойная и 2,3,6-

три.хлорбензойная кислота. J. L. Stoddart [132] объясняет это низкой

растворимостью галогенопроизводных бензойной кислоты при заданных рН (2,5;

3,5 и 5,2) в липидах. Степень хлорирования, фто-рирования и метилирования

препаратов обусловливает их биологическую активность и токсичность действия

на растительный организм.

Избирательная способность по отношению к абсорбции различных веществ

растительными тканями связана с физическими свойствами соединений, включая

константу их диссоциации при различной степени хлорирования, фторирова-ния,

метилирования и т. д., а также скорость их распределения в липидной фазе

при данной рН [23, 24, 91]. При обработ-26

ке растений препаратами их проницаемость могут улучшать некоторые

вспомогательные вещества, особенно поверхностно-активные (ПАВ), которые

улучшают контакт между препаратом и поверхностью листа, а также повышают

степень проникновения препарата в растительный организм. Так, абсорбция

2,4Д возрастала в 7—8 раз при введении в раствор тви-на 80 (концентрация

1%) [57].

С помощью '^I" и "'I" метки изучали «крепление» на поверхности листьев

сои препарата ТИБА (2,3,5-тр.ийодбензой-ная кислота) в концентрации 200 мг

[110]. (ТИБА относится к веществам, обладающим гаметоцидной активностью).

Были взяты четыре формы солей ТИБА (натриевая, диметил-амин, диэтиламин и

триэтила'мин) в сочетании с четырьмя ПАВ: твин 20 (полдокоиэтилен сорбитан

монолаурат), тритон 100 (октил фенокоиполиэтоксиэтанол) — оба неионные ПАВ;

арквад 50 (алкил четвертичный аммоний хлорид) —ка-тионное ПАВ и игепон Т-77

(натрий 1\Г-метил-1\Г-омоил та-урат) — анионное ПАВ. Все ПАВ исследовали в

двух концентрациях — 500 и 2000 мг/кг.

Взаимосвязь физико-химических свойств ПА1В и их концентраций с формами

солей ТИБА носила сложный характер. ПАВ оказывали значительное влияние на

закрепление препарата на растениях, а наибольшая разница в степени

«крепления» солей ТИБА встречалась в пределах неионных ПАВ. Следовательно,

это лимитирует выбор ПАВ среди неионных классов, свидетельствуя о их

неспецифичности по сравнению с ионорганическими классами ПАВ.

Физиологическая активность препарата зависела от подбора ПАВ. Низкие

концентрации ионных ПАВ (500 мг/кг) достаточны для достижения максимума

прикрепления нанесенного препарата. Не было отмечено взаимосвязи между

формами солей и ПАВ. Во всех случаях для эффективной абсорбции требовалась

высокая концентрация неионного ПАВ (2000 мг/кг), высокие же концентрации

ионных ПАВ не улучшали степени закрепления препарата, что свидетельствует о

физико-химической взаимосвязи, включающейся в комплекс проницаемости [11

б].

Активность препарата в основном проявляется при возрастании концентрации

этиленокоида в ПАВ, когда его молекулы становятся более гидрофильными или

соотношение гидрофильных (ГФ) группировок к липофильным (ЛФ) в молекуле ПАВ

довольно высокое. Таким образом, для каждого химического соединения с

гаметоцидной активностью подбор ПАВ и его концентраций зависит от физиолого-

химических свойств активного ингредиента.

27

Степень абсорбции препарата растительными тканями во многом зависит от

соотношения группировок ГФ/ЛФ в молекуле ПАВ для определенных концентраций

гаметоцида. В опытах с энзиматически изолированной кутикулой листьев груши

получены результаты, свидетельствующие об изменении проницаемости 2,4Д в

зависимости от значения ГФ/ЛФ (106]. При величине соотношения у ПАВ ГФ/ЛФ,

равной 16,7, не отмечено изменений проницаемости в шкале концентрация 2,4Д

от 0,05 до 1%. Другое неионное ПАВ с ГФ/ЛФ=8,6 способствовало увеличению

абсорбции 2,4Д в 10 раз при значениях его концентраций, близких к 1%.

Третье неионное и высоколипофильное ПАВ (ГФ/ЛФ =4,3) увеличивало поглощение

2,4Д в 15 раз при всех заданных концентрациях от 0,1 до 1%. Эти

исследования показали важную роль активного ингредиента, сопутствующего

ПАВ, в регуляции абсорбции.

Опыты по поглощению и распределению метазола [2-(3,3-дихлордион)] в

смеси с ПАВ (полисборбатом) при различных соотношениях ГФ/ЛФ подтвердили,

что эффект ПАВ обратно пропорционален значению ГФ/ЛФ. Среди различных

параметров для достижения высокого эффекта абсорбции гаметоцида тканями

соотношение ГФ/ЛФ в молекулах ПАВ— наиболее влиятельный фактор,

определяющий степень абсорбции. Трудность подбора такого ПАВ для каждого

определенного гаметоцида связана с тем, что соотношение ГФ/ЛФ может в

значительной степени координироваться сложной взаимосвязью химических и

физических свойств активности ингредиентов смеси, морфологическими и

цитологическими особенностями листа. Поэтому для каждой культуры необходим

дифференцированный подход при подборе ПАВ для получения оптимального

эффекта химической индукции мужской стерильности, вызываемой гаметоцидом.

Некоторые неионные ПАВ силикон-гликолевой природы по сравнению со

стандартными неионными органическими ПАВ могут в большей степени повышать

эффективность химически активных веществ благодаря улучшению абсорбции

тканями. Однако эта группа ПАВ, обладающая большей эффективностью, чем

катионные аминосиликоны, имеет отрицательное свойство — низкую

растворимость в воде [86]. Несмотря на это при всем разнообразии

применяемых в сельском хозяйстве химически активных веществ, в том числе и

гаметоцидов, имеется возможность объединить препараты на основании

одинакового характера абсорбции, что облегчило бы поиск и рекомендации ПАВ

для этих групп.

Характер абсорбции некоторых фторсоединений подобен абсорбции 2,4,5-Т.

Препараты наносили на листья капельным методом в смеси с ПАВ,

характеризующимися различным со-

28

отношением ГФ/ЛФ: полиоксиэтилен (ГФ/ЛФ=20), сорби-тан монолаурат

(ГФ/ЛФ=16,7), сорбитан моностеарат (ГФ/ЛФ =9,6) и полиоксиэтилен

(ГФ/ЛФ=4). В июне наиболее эффективным было применение ПАВ в соотношении

ГФ/ЛФ =9,6, в июле—августе — с соотношением 16,7. Абсорбция веществ,

нанесенных на лист, осуществляется через трихомы и устьица, откуда

соединения распределяются латераль-но через эпидермальные клетки. При

исследовании по подбору .ПАВ для эффективной абсорбции веществ с

гаметоцидной активностью для каждого вида необходимо учитывать (кроме

.физико-химических характеристик самого препарата) стадию .развития

растения и возрастные изменения морфологических характеристик листа,

обусловливающие смачивающую способность его поверхности и относительное

значение специфической абсорбции [100].

ПРИМЕНЕНИЕ ГАМЕТОЦИДОВ(КОНЦЕНТРАЦИИ,ДОЗЫ И СРОКИ ОБРАБОТКИ)

Химические препараты как источники гаметоцидной активности были выделены

из биологически активных веществ различного физиологического действия

(ростактивирующие вещества, ретарданты, гербициды, растительные гормоны .и

гор-моноподобные вещества и т. п.). Среди хорошо известных физиологически

активных соединений гаметоцидная активность была обнаружена у веществ,

обладающих ретардант-к'ыми свойствами: этрела (этефон) — 2-

хлорэтилфосфоновая кислота, далапона — 2,2-дихлорпро.пионовая кислота, ГМК.

Некоторые соединения, кроме фирменных названий, получили определенные

шифры как вещества, проявившие гамето-цидные свойства: мендок, или FW-450

(2,3-дихлоризомасля-ная кислота), FW-676 (кальциевая соль 2,3-

дихлоризомасля-ной кислоты), G-315 (магниевая соль 2,3-дихлоризомасляной

кислоты), u'niroyal D-513 (пропаргил 2-октосульфит), OCDP [N (р-алорфенил)

- 2,4-диметил-6-оксо-3,6-дигидроникоти'новая кислота], RH-531 [натриевая

соль 1-(р-хлорфенил)-1,2-дигид-ро-4,6-ди'метил-2-оксоникотино'вая кислота].

Первые опыты с применением этрела в качестве гаметоцида для мягкой

пшеницы были выполнены в 1961 г. К. В. Porter и A. F. Weise [116].

Предварительные эксперименты в вегетационных сосудах с сортами мягкой

яровой пшеницы Marled и Thatcher дали обнадеживающие результаты. При

обработке растений в фазы кущения, выхода в трубку и колошения растворами в

концентрации 100, 250, 500, 750, 1000, 2000 и 2500 мг/кг из расчета 30 мл

на сосуд с тремя растениями было установлено, что этрел, начиная с дозы 750

мг/кг, индуцировал 100%-ную стерильность у сорта Marfed. В этих

29

опытах исследователи впервые столкнулись с проблемой сортовой специфичности

ответной реакции на обработку гамето-цидом.

'Степень стерильности при тех же дозах этрела у сорта Thatcher была

значительно ниже, чем у Marfed, так как Thatcher был менее чувствителен к

0'бработке препаратом. В полевых условиях опыты проводили с сортом мягкой

озимой пшеницы Nugaines. Обработку этрелом осуществляли в те же фазы

концентрациями 500, 1000, 1500, 2000 и 3000 мг/кг. Опытные и контрольные

варианты размещали рядом с сортами-опылителями, цветущими в разные сроки.

Полная мужская стерильность была отмечена у растений пшеницы, обработанных

растворами этрела в концентрации 1500, 2000, 3000 мг/кг. Максимальная

стерилизация достигалась при нанесении на растения растворов этрела

повышенной концентрации — 2000 и 3000 мг/кг в конце фазы выхода в трубку.

При обработке в период колошения эффективность препарата снижалась. В

опытах сохранилась высокая степень женской фертильности. Стерильные

растения по морфологическим признакам были сходны с растениями пшеницы,

обладающими UjMC. Применяемые концентрации вызывали укорачивание междоузлии

и анормальное колошение отдельных растений [116].

Дальнейшие исследования были направлены на поиск эффективного сочетания

оптимальных доз, концентраций и сроков обработки этрелом зерновых. Так, в

экспериментах по 'ян-дуцированию мужской стерильности у растений мягкой

пшеницы, проведенных в условиях вегетационного домика и в поле, раствор

этрела в дозах 500, 1000, 2000 и 3000 мг/кг наносили в начальной фазе

выхода в трубку и в конце ее. Наиболее эффективными в данных условиях были

дозы этрела 1000 и 2000 мг/кг. Несмотря на нежелательные явления (усиленное

кущение, замедленное колошение, торможение роста и развития,

морфологические анормальности, приводившие в ряде случаев к гибели

растений, и, как правило, к снижению урожайности), Р. L. Rowelil и D. G.

Miller [122] считают, что надежды на этрел как на вещество, селективно

вызывающее мужскую стерильность, довольно обоснованны и имеют практические

возможности, которые лимитируются лишь разработкой конкретных методов

обработки.

J. Law и N. С. Stoskopf [95] применяли этрел в полевых условиях в

различные фазы морфогенеза ярового ячменя. Авторы пришли к выводу, что в

условиях Канады лучшим периодом для обработки растений гаметоцидом является

середина фазы выхода в трубку (фенологически — период появления

предпоследнего листа) при одноразовом внесении до-

3J

зы 1,68 кг/га, которая давала приемлемый уровень мужской стерильности и не

Страницы: 1, 2, 3, 4, 5, 6, 7


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.