рефераты бесплатно

МЕНЮ


Расово-антропологическая школа

рецессивный ген, вызывающий тяжёлую болезнь - не свёртываемость крови

(гемофилию). Этот рецессивный ген обычно проявляется только у мужчин.

Биологи различают наследственные и ненаследственные изменения организма.

Наследственная изменчивость называется также модификационной. Она

проявляется под прямым действием внешней среды. Облик организма

определяется множеством условий, в том числе температурой окружающей среды,

характером питания, избытком или недостатком солнечного света и т.д.

например, под действием солнечных лучей кожа человека приобретает загар,

становится темнее (потомству этот смуглый цвет кожи не передаётся). Однако

кожа европейца никогда не сможет стать столь же тёмной, как кожа африканца.

Модификационная изменчивость имеет свои пределы, которые называются нормой

реакции. У различных организмов норма реакции может отличаться, она

определяется генотипом. К наследственной изменчивости относятся

комбинаторная изменчивость. Она связана с образованием новых сочетаний

генов в процессе кроссинговера. Сами гены при этом типе изменчивости не

изменяются. Но наибольшее значение для эволюции имеет мутации генов и

хромосом - возникают случайно и достаточно редко. Чаще всего мутации

неблагоприятны для организации и могут даже повлечь его гибель (летальные

мутации). Некоторые вполне здоровые люди могут быть носителями летальных

или полулетальных мутаций, которые проявляются у их потомков. (Наиболее

известный пример - гемофилия, о чём сказано выше). Поэтому для

предупреждения наследственных заболеваний у будущих детей молодые

супружеские пары нередко проходят специальное генетическое обследование. По

наследству чаще всего передают мутации, которые возникают в половых

клетках. Однако и в соматических клетках тоже возможны мутации. Массовые

мутации возникают под влиянием радиации, а также под действием различных

вредных и ядовитых веществ (в том числе алкоголя, никотина, наркотиков).

Мутации в соматических клетках часто вызывают раковые заболевания (именно

поэтому курильщики гораздо чаще заболевают раком). Мутации в половых

клетках приводят к появлению потомства, частично нежизнеспособного, а

частично - страдающего от врождённых генетических дефектов. Чрезвычайно

редкими исключениями являются полезные мутации. Однако именно полезные

мутации предоставляют их носителям преимущества в ходе естественного отбора

и создают материал для эволюции.

ДНК как основа наследственности.

О природе наследственности на протяжении истории человечества

высказывались самые разнообразные предположения. Однако в сороковых годах

XX века было установлено, что материальным носителем наследственной

информации является ДНК, в молекуле которой зашифрованы признаки, присущие

данному виду организмов во всем их многообразии.

Каждый из нас состоит примерно из 10 в пятнадцатой степени клеток. Это

своего рода империя клеток, каждая из которых представляет собой

миниатюрную фабрику для производства белков. Молекулы белков похожи на

длинные цепочки бус, в которых роль отдельных звеньев играют 20 различных

аминокислот, способных соединяться между собой в любом порядке. Если

сравнить аминокислоты с буквами алфавита, то белки будут похожи на

составленные из них слова, только очень длинные. Число различных вариантов

белков, составленных всего из пяти аминокислот, уже превышает три миллиона.

В состав же среднего белка входит 100-200 аминокислот. Понятно, что

разнообразие цепочек такой длины будет измеряться уже астрономическими

числами.

Человеческий организм состоит из приблизительно трех тысяч белков.

Информация о строении белка сводится, по сути, к последовательности

аминокислот, из которых он состоит. Информация об аминокислотном составе

белков организма записана в молекулах ДНК (Дезоксирибо Нуклеиновая

Кислота). Любой полимер состоит из мономеров – мономеры ДНК называются

нуклеотидами (от латинского nucleus – ядро). В популярной литературе ДНК –

«молекулу жизни» часто сравнивают с очень длинным текстом. Только в отличие

от обычных текстов, текст ДНК написан не тридцатью тремя «буквами», а всего

лишь четырьмя. Их роль играют особые химические соединения, азотистые

основания аденин, тимин, гуанин и цитозин. Молекула ДНК является двойной,

она состоит из двух закрученных друг относительно друга цепочек. Любой

аденин, расположенный на одной цепи, соединяется при этом с противоположным

ему тимином на другой цепочке двумя химическими связями, а гуанин с

цитозином – тремя.

Отрезок ДНК, на котором записана информация об одном белке, называется

геном. Иначе говоря, информация о каждом белке человеческого организма

хранится на своем отрезке молекулы ДНК. Всю генетическую информацию клетки

или организма называют генотипом. Внешнее проявление этой информации, то

есть белки, ткани, органы, а так же показатели типа размер, цвет, форма,

составляют фенотип (от греческого phaino – являю). Фенотип – совокупность

признаков организма, которые можно зарегистрировать, взвесить, измерить.

Правильное положение каждого из четырех знаков аденина, тимина, гуанина и

цитозина в ДНК и их точная связь со знаками на противоположной цепочке

чрезвычайно важны для правильной работы клетки. Каждые три знака кодируют

одну аминокислоту и изменения даже одного знака в ДНК клетка начнет

производить белок, в котором одна аминокислота может быть заменена на

другую. Если же аминокислота играет в данном белке ключевую роль, его

работа будет существенно нарушена: в лучшем случае клетка окажется

неспособной выполнять необходимую работу, а в худшем – начнет при этом

бесконтрольно размножаться, что послужит началом образования опухоли.

ДНК не случайно образно называют «нитью жизни». На фотографиях, полученных

с помощью электронного микроскопа, она действительно напоминает тонкую

ниточку. Чем сложнее организм, тем длиннее у него общая протяженность нити

ДНК. Понять эту закономерность не сложно – у более высокоорганизованного

существа должно быть больше белков. Следовательно, и протяженность ДНК, с

помощью которой хранится информация об этих белках, будет у него больше. У

большинства бактерий, например, нить ДНК совсем коротенькая и свернута в

виде колечка. Человеческая нить ДНК в длину около метра, чтобы поместиться

в клетке ей придется очень сильно скрутиться, наподобие клубка. Такими

«клубками» ДНК в наших клетках являются хромосомы. В переводе с греческого

хромосома – окрашенное тело. Их действительно удается окрашивать с помощью

особых методик, и тогда у делящихся клеток они становятся хорошо видимыми

под микроскопом. Неудивительно, что видны они именно в момент деления, ведь

в этот, относительно недолгий период времени хромосомы буквально

«растаскиваются» по разным концам клетки. Поэтому нить ДНК в это время

«смотана» наиболее компактно. У молодой, только что разделившейся клетки,

хромосомы уже не видны, ее ДНК «расплетается», разворачивается для того,

чтобы все ее гены были доступны для работы. Деление клеток и их работа

находятся в определенном противоречии. Часть клеток постоянно делится – их

называют стволовыми клетками. Другая же часть, образующаяся в результате

таких делений, специализируется на определенной работе и уже не делится

вплоть до своей гибели. К неделящимся клеткам относятся, например, мышечные

клетки сердца или нервные клетки. НЕ случайно про последние говорят, что

они не восстанавливаются. Стволовые клетки постоянно работают в глубине

кожи или в стенках кишечника, благодаря чему и происходит регулярное

обновление эпидермиса и слизистой выстилки кишок.

Перед началом деления каждая нить ДНК успевает построить свою копию. Зачем

эти нити компактно сворачиваются, и получается пара совершенно одинаковых

хромосом.

Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный

метод исследования наследственных признаков – гибридологический анализ,

т.е. метод изучения генов путем анализа признаков потомков от определенных

скрещиваний. В основе законов Менделя и гибридологического анализа лежат

события, происходящие в мейозе: альтернативные аллели находятся в

гомологичных хромосомах гибридов и потому расходятся поровну. Именно

гибридологический анализ определяет требования к объектам общих

генетических исследований: это должны быть легко культивируемые организмы,

дающие многочисленное потомство и имеющие короткий репродуктивный период.

Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила

– Drosophila melanogaster. На многие годы она стала излюбленным объектом

генетических исследований. Усилиями генетиков разных стран на ней были

открыты фундаментальные генетические явления. Было установлено, что гены

расположены в хромосомах линейно и их распределение у потомков зависит от

процессов мейоза; что гены, расположенные в одной и той же хромосоме,

наследуются совместно (сцепление генов) и подвержены рекомбинации

(кроссинговер). Открыты гены, локализованные в половых хромосомах,

установлен характер их наследования, выявлены генетические основы

определения пола. Обнаружено также, что гены не являются неизменными, а

подвержены мутациям; что ген – сложная структура и имеется много форм

(аллелей) одного и того же гена.

Затем объектом более скрупулезных генетических исследований стали

микроорганизмы, на которых стали изучать молекулярные механизмы

наследственности. Так, на кишечной палочке Escheriсhia coli было открыто

явление бактериальной трансформации – включение ДНК, принадлежащей клетке

донора, в клетку реципиента – и впервые доказано, что именно ДНК является

носителем генов. Была открыта структура ДНК, расшифрован генетический код,

выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек,

исследованы регуляция активности гена, явление перемещения элементов генома

и др. Наряду с указанными модельными организмами генетические исследования

велись на множестве других видов, и универсальность основных генетических

механизмов и методов их изучения была показана для всех организмов – от

вирусов до человека.

Геном человека.

Международные проект «Геном человека» был начат в 1988 г. Это один из самых

трудоемких и дорогостоящих проектов в истории науки. Если в 1990 г. на него

было потрачено около 60 млн. долларов в целом, то в 1998 г. одно только

правительство США израсходовало 253 млн. долларов, а частные компании – и

того больше. В проекте задействованы несколько тысяч ученых из более чем 20

стран. С 1989 г. в нем участвует и Россия, где по проекту работает около

100 групп. Все хромосомы человека поделены между странами-участницами, и

России для исследования достались 3-, 13- и 19-я хромосомы.

Основная цель проекта – выяснить последовательность нуклеотидных оснований

во всех молекулах ДНК человека и установить локализацию, т.е. полностью

картировать все гены человека. Проект включает в качестве подпроектов

изучение геномов собак, кошек, мышей, бабочек, червей и микроорганизмов.

Ожидается, что затем исследователи определят все функции генов и

разработают возможности использования полученных данных.

Что же представляет собой основной предмет проекта – геном человека?

Известно, что в ядре каждой соматической клетки (кроме ядра ДНК есть еще и

в митохондриях) человека содержится 23 пары хромосом, каждая хромосома

представлена одной молекулой ДНК. Суммарная длина всех 46 молекул ДНК в

одной клетке равна приблизительно 2 м, они содержат около 3,2 млрд. пар

нуклеотидов. Общая длина ДНК во всех клетках человеческого тела (их

примерно 5х1013) составляет 1011 км, что почти в тысячу раз больше

расстояния от Земли до Солнца.

Как же помещаются в ядре такие длиннющие молекулы? Оказывается, в ядре

существует механизм «насильственной» укладки ДНК в виде хроматина - уровни

компактизации (рис. 1).

[pic]

Рис. 1. Уровни упаковки хроматина

Первый уровень предполагает организацию ДНК с гистоновыми белками –

образование нуклеосом. Две молекулы специальных нуклеосомных белков

образуют октамер в виде катушки, на которую наматывается нить ДНК. На одной

нуклеосоме размещается около 200 пар оснований. Между нуклеосомами остается

фрагмент ДНК размером до 60 пар оснований, называемый линкером. Этот

уровень укладки позволяет уменьшить линейные размеры ДНК в 6–7 раз.

На следующем уровне нуклеосомы укладываются в фибриллу (соленоид). Каждый

виток составляет 6-7 нуклеосом, при этом линейные размеры ДНК уменьшаются

до 1 мм, т.е. в 25-30 раз.

Третий уровень компактизации – петельная укладка фибрилл – образование

петельных доменов, которые под углом отходят от основной оси хромосомы. Их

можно увидеть в световой микроскоп как интерфазные хромосомы типа «ламповых

щеток». Поперечная исчерченность, характерная для митотических хромосом,

отражает в какой-то степени порядок расположения генов в молекуле ДНК.

Если у прокариот линейные размеры гена согласуются с размерами структурного

белка, то у эукариот размеры ДНК намного превосходят суммарные размеры

значимых генов. Это объясняется, во-первых, мозаичным, или экзон-интронным,

строением гена: фрагменты, подлежащие транскрипции – экзоны, перемежаются

незначащими участками – интронами. Последовательность генов сначала

полностью транскрибируется синтезирующейся молекулой РНК, из которой затем

вырезаются интроны, экзоны сшиваются и в таком виде информация с молекулы

иРНК считывается на рибосоме. Второй причиной колоссальных размеров ДНК

является большое количество повторяющихся генов. Некоторые повторяются

десятки или сотни раз, а есть и такие, у которых встречается до 1 млн.

повторов на геном. Например, ген, кодирующий рРНК повторяется около 2 тыс.

раз.

Еще в 1996 г. считалось, что у человека около 100 тыс. генов, сейчас

специалисты по биоинформатике предполагают, что в геноме человека не более

60 тыс. генов, причем на их долю приходится всего 3% общей длины ДНК

клетки, а функциональная роль остальных 97% пока не установлена.

Каковы же достижения ученых за десять с небольшим лет работы над проектом?

Первым крупным успехом стало полное картирование в 1995 г. генома бактерии

Haemophilus influenzae. Позднее были полностью описаны геномы еще более 20

бактерий, среди которых возбудители туберкулеза, сыпного тифа, сифилиса и

др. В 1996 г. картировали ДНК первой эукариотической клетки – дрожжей, а в

1998 г. впервые был картирован геном многоклеточного организма – круглого

червя Caenorhabolitis elegans. К 1998 г. установлены последовательности

нуклеотидов в 30 261 гене человека, т.е. расшифрована примерно половина

генетической информация человека.

Полученные данные позволили впервые реально оценить функции генов в

организме человека (рис. 2).

[pic]

Рис. 2. Примерное распределение генов человека по их функциям.

1 – производство клеточных материалов; 2 – производство энергии и ее

использование; 3 – коммуникации внутри и вне клеток; 4 – защита клеток от

инфекций и повреждений; 5 – клеточные структуры и движение; 6 –

воспроизводство клеток; 7 – функции не выяснены

В таблице 1 приведены известные данные по количеству генов, вовлеченных в

развитие и функционирование некоторых органов и тканей человека.

Таблица 1

Название органа, ткани, клетки Количество генов

1. Слюнная железа 17

2. Щитовидная железа 3 584

3. Гладкая мускулатура 127

4. Молочная железа 696

5. Поджелудочная железа 1094

6. Селезенка 1094

7. Желчный пузырь 788

8. Тонкий кишечник 297

9. Плацента 1290

10. Скелетная мышца 735

11. Белая кровяная клетка 2164

12. Семенник 370

13. Кожа 620

14. Мозг 3195

15. Глаз 547

16. Легкие 1887

17. Сердце 1195

18. Эритроцит 8

19. Печень 2091

20. Матка 1859

За последние годы были созданы международные банки данных о

последовательностях нуклеотидов в ДНК различных организмов и о

последовательностях аминокислот в белках. В 1996 г. Международное общество

секвенирования приняло решение о том, что любая вновь определенная

последовательность нуклеотидов размером 1–2 тыс. оснований и более должна

быть обнародована через Интернет в течение суток после ее расшифровки, в

противном случае статьи с этими данными в научные журналы не принимаются.

Любой специалист в мире может воспользоваться этой информацией.

В ходе выполнения проекта «Геном человека» было разработано много новых

методов исследования, большинство из которых в последнее время

автоматизировано, что значительно ускоряет и удешевляет работу по

расшифровке ДНК. Эти же методы анализа могут использоваться и для других

целей: в медицине, фармакологии, криминалистике и т.д.

Остановимся на некоторых конкретных достижениях проекта, в первую очередь,

конечно, имеющих отношение к медицине и фармакологии.

В мире каждый сотый ребенок рождается с каким-либо наследственным дефектом.

К настоящему времени известно около 10 тыс. различных заболеваний человека,

из которых более 3 тыс. – наследственные. Уже выявлены мутации, отвечающие

за такие заболевания, как гипертония, диабет, некоторые виды слепоты и

глухоты, злокачественные опухоли. Обнаружены гены, ответственные за одну из

форм эпилепсии, гигантизм и др. Интересно, что мутации генов не всегда

приводят к негативным последствиям – они иногда могут быть и полезными.

Так, известно, что в Уганде и Танзании инфицированность СПИДом среди

проституток доходит до 60–80%, но некоторые из них не только не умирают, но

и рожают здоровых детей. Видимо, есть мутация (или мутации), защищающая

человека от СПИДа. Люди с такой мутацией могут быть инфицированы вирусом

иммунодефицита, но не заболевают СПИДом. В настоящее время создана карта,

примерно отражающая распределение этой мутации в Европе. Особенно часто (у

15% населения) она встречается среди финно-угорской группы населения.

Идентификация такого мутантного гена могла бы привести к созданию надежного

способа борьбы с одним из самых страшных заболеваний нашего века.

Выяснилось, что разные аллели одного гена могут обуславливать разные

реакции людей на лекарственные препараты. Фармацевтические компании

планируют использовать эти данные для производства определенных лекарств,

предназначенных различным группам пациентов. Это поможет устранить побочные

реакции от лекарств, точнее, понять механизм их действия, снизить

миллионные затраты. Целая новая отрасль – фармакогенетика – изучает, как те

или иные особенности строения ДНК могут ослабить или усилить воздействие

лекарств.

Расшифровка геномов бактерий позволяет создавать новые действенные и

безвредные вакцины и качественные диагностические препараты.

Конечно, достижения проекта «Геном человека» могут применяться не только в

медицине или фармацевтике.

По последовательностям ДНК можно устанавливать степень родства людей,

а по митохондриальной ДНК – точно устанавливать родство по материнской

линии. Разработан метод «генетической дактилоскопии», который позволяет

идентифицировать человека по следовым количествам крови, чешуйкам кожи и

т.п. Этот метод с успехом применяется в криминалистике – уже тысячи людей

оправданы или осуждены на основании генетического анализа. Сходные подходы

можно использовать в антропологии, палеонтологии, этнографии, археологии и

даже в такой, казалось бы, далекой от биологии области, как сравнительная

лингвистика.

В результате проведенных исследований появилась возможность сравнивать

геномы бактерий и различных эукариотических организмов. Выяснилось, что в

процессе эволюционного развития у организмов увеличивается количество

интронов, т.е. эволюция сопряжена с «разбавлением» генома: на единицу длины

ДНК приходится все меньше информации о структуре белков и РНК (экзоны) и

все больше участков, не имеющих ясного функционального значения (интроны).

Это одна из больших загадок эволюции.

Раньше ученые–эволюционисты выделяли две ветви в эволюции клеточных

организмов: прокариоты и эукариоты. В результате сравнения геномов пришлось

выделить в отдельную ветвь архебактерии – уникальные одноклеточные

организмы, сочетающие в себе признаки прокариот и эукариот.

В настоящее время также интенсивно изучается проблема зависимости

способностей и талантов человека от его генов. Главная задача будущих

исследований – это изучение однонуклеотидных вариаций ДНК в клетках разных

органов и выявление различий между людьми на генетическом уровне. Это

позволит создавать генные портреты людей и, как следствие, эффективнее

лечить болезни, оценивать способности и возможности каждого человека,

выявлять различия между популяциями, оценивать степень приспособленности

конкретного человека к той или иной экологической обстановке и т.д.

Заключение.

Расово-антропологическая школа была подвергнута в к. 19 — 20 в.

исчерпывающей критике; абсолютное большинство ее теоретических положений

было опровергнуто; была доказана произвольность и предрассудочная подоплека

таких тезисов и понятий, как «раса», «арийская раса», «чистота расы», связь

между физико-анатомическими расовыми особенностями и интеллектуальными

способностями и т.д. Было показано, что культурные различия между расами

определяются не физиологическими расовыми факторами, а средой, в которой

они развивались. Большую роль в этой критике сыграли работы Боаса, Г.

Мюрдала, Ф. Хэн-кинса, Т. Вайца, С.Оссовского и др. Они доказали что все

расы одинаковы по генетическим, биохимическим, физиологическим признаками,

имеют неограниченные возможности скрещивания, рождают плодовитое потомство

от смешанных браков. Это указывает на принадлежность всех рас к единому

виду – Homo sapiens. Дж.Хаксли предложил использовать вместо понятия

«раса» понятие «этническая группа».

Список библиографии:

1) Антропология. Хомутов А.Е. – М.: "Феникс", 2002г. С - 384.

2) «Антропология» Хрестоматия под ред. В.Ю. Бахолдина, М.А. Дерягина.

М: 1997. С – 392 с.

3) Акифьев А.П. «Генетика и судьбы» М.: " Центрполиграф ". 2002 г. С –

320.

4) Авдеев В.Б. БИОЛОГИЧЕСКАЯ ОСНОВА НОРДИЧЕСКОГО МИРОВОЗЗРЕНИЯ

http://inoe.ru/library/texts/socium/nord.htm

5) Генетические процессы в популяциях. Алтухов Ю. П. М.: "ИКЦ

АКАДЕМКНИГА" 2003г. С – 431.

6) Кравченко А.И. Социальная антропология. – М.: "Академический

проект", 2003г. С – 541

7) Культурная (социальная) антропология. Орлова Э.А., "Академический

проект" – 2004г. С - 479

8) Культурология.XX век. Энциклопедия Т.2. - СПб .: “Универсетская

книга ”, 1998.С – 446.

9) Лекции по социологииЛекция пятая (окончание). БИОЛОГИЧЕСКИЙ

РЕДУКЦИОНИЗМ: РАСОВО-АНТРОПОЛОГИЧЕСКАЯ ШКОЛА. РУССКИЙ ГУМАНИТАРНЫЙ

ИНТЕРНЕТ-УНИВЕРСИТЕТ.

http://www.i-u.ru/biblio/archive/noname%5Fsociology%5Flections/6.aspx

10) МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Учебная программа по

дисциплине. Антропология. Для студентов заочного отделения. Москва

– 2003 г.

http://www.mesi.ru/Pedagogika/io/lr/maximova.htm

11) Общая биология. Учебник для 10–11 классов общеобразовательных

учреждений / Ю.И. Подянский, А.Д.Браун, Н.М. Верозилин и др. Под

ред. Ю.И.Полянского - М.: "Просвещение", 1998г. С – 288.

12) Расизм и его корни.

http://school.ort.spb.ru/(Eng)/library/torah/lessons10/10-14.htm

13) Секреты наследственности человека. СПб: "Учитель и ученик", 2002г. -

345 с.

14) Современный этап эволюции человека.

http://bio.1september.ru/article.php?ID=200101002

15) Эволюционная антропология : биологические и культурные аспекты. -

М.: УРАО, 1999г. С – 208.

16) Я познаю мир: Генетика. Шитиков Д.А. М.: "АСТ", 2004г. С- 305.

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.